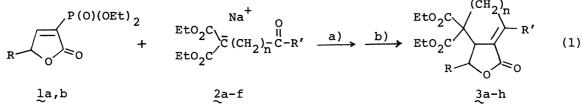
© 1987 The Chemical Society of Japan

CHEMISTRY LETTERS, pp. 2369-2372, 1987.

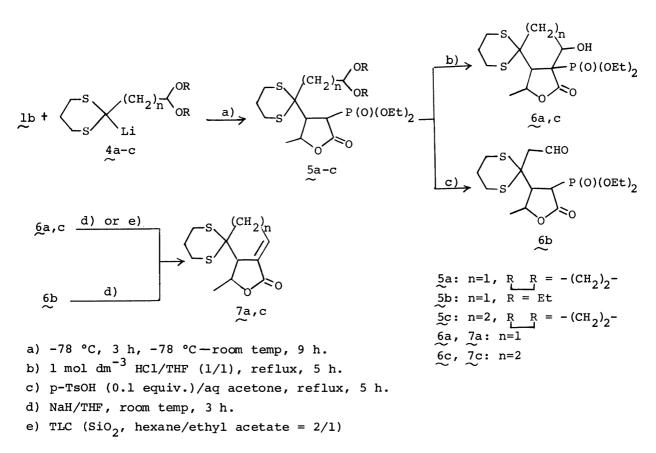

A New Synthesis of γ -Lactones with α, β -Fused Ring Systems Using α -Diethoxyphosphinyl- $\Delta^{\alpha, \beta}$ -butenolides

Toru MINAMI,^{*} Kazushi WATANABE, Tsuguhiko CHIKUGO, and Yoshiyuki KITAJIMA

Department of Industrial Chemistry, Kyushu Institute of Technology, Sensui-cho, Tobata, Kitakyushu 804

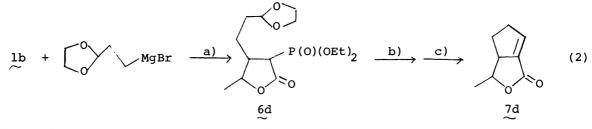
The intramolecular Wittig-Horner reaction of α -diethoxyphosphinyl- Δ^{α} , β -butenolides with various nucleophilic reagents containing the carbonyl group produced α , β -carbocyclic fused- γ lactones in moderate yields.

There have been known many naturally occurring sesquiterpene γ -lactones with α, β -fused ring systems,¹⁾ which attracted much interest due in large part to their biological activities. In comparison with β, γ -fused lactones, synthetic methods for the construction of α, β -fused- γ -lactone systems have not been well developed.²⁾ We have recently reported a new synthesis of α -diethoxyphosphinyl- $\Delta^{\alpha, \beta}$ -butenolide (1a) and its synthetic application to α, β -difunctionalized γ -lactones such as lignans.³⁾ In the present paper, we report the successful utilization of α -diethoxyphosphinyl- $\Delta^{\alpha, \beta}$ -butenolides as versatile reagents for


la: R= H lb: R= Me a) THF, -78 °C, l h. b) -78 °C—room temp, 9 h, and then reflux, 2 h. efficient construction of α,β -carbocyclic fused- γ -lactones. The reaction of Δ^{α},β -butenolides la,b⁴ with the carbanions 2a-f, generated in-situ from diethyl-2-oxoalkyl- and 3-oxoalkylmalonates and l.l equiv. of sodium hydride in THF, at -78 °C to room temperature for 9 h and at reflux for 2 h afforded the expected α,β -carbocyclic fused- γ -lactones 3a-h⁵ in moderate yields (Eq. 1)(Table 1).

3	n	R	R'	Yield/% ^{a)}	3	n	R	R'	Yield/% ^{a)}
3a ∼	1	Н	Me	24	3e ^{b)}	2	н	Me	46
3b ∼	1	Me	Me	78	3f	2	Me	Me	59
3c ∼	1	н	Ph	48	<u>3</u> g	2	н	н	62
<u>3</u> d	1	Me	Ph	62	<u>_3h</u>	2	Me	н	54
a) Isolated yield. b) See Ref. 3.									

Table 1. Synthesis of α , β -carbocyclic fused- γ -lactones 3


Similar reaction of the butenolide 1b with 2-lithio-2-(1',3'-dioxolan-2'-y1)methy1-

 $(\underline{4}a)$, $-2-(2',2'-diethoxyethyl)-(\underline{4}b)$, and $-2-[\beta-(1',3'-dioxolan-2'-yl)ethyl]-1,3-dithianes (\underline{4}c)$, followed by quenching with aqueous NH₄Cl, provided

Scheme 1.

the corresponding Michael adducts 5a-c in 55-58% yields. Interestingly, hydrolysis of the adducts 5a-c with 1 M (1 M = 1 mol dm⁻³) hydrochloric acid in THF at reflux for 5 h gave the bicyclic phosphonates 6a,c in quantitative yields, while similar treatment of 5b in aqueous acetone containing p-TsOH (0.1 equiv.) led to the expected phosphonate 6b (63% yield).⁶) The structure of 6a,c were determined on the basis of their IR, and ¹H and ¹³C NMR spectra.⁶) The phosphonates 6a and 6c, upon treatment with preparative TLC (silica gel, hexane/ethyl acetate = 2/1), were unexpectedly transformed into the bicyclic γ -lactones⁷) 7a and 7c in 83% and 64% yields. Alternatively, the lactone 7a could be also produced in 53% and 65% yields from respective treatments of 6a and 6b with sodium hydride in THF at room temperature for 3 h (Scheme 1). Moreover, the reaction of (1,3-dioxolan-2-yl)-ethylmagnesium bromide with 1b under similar conditions provided the Michael adduct 6d (63% yield), followed by acidic hydrolysis and the intramolecular Wittig-Horner reaction to give the fused lactone 7d⁷ in 54% yield (Eq. 2).

a) -78 °C, 4 h. b) 1 M HCl/THF (1/1), reflux, 5 h. c) NaH/THF, room temp, 5 h.

This methodology using diethoxyphosphinyl- α , β -butenolides could be said to provide a remarkably simple route to α , β -carbocyclic fused γ -lactones. We are pursuing synthetic applications of the products described above.

We are grateful for financial support of this work by a Grant-in-Aid for General Scientific Research (No. 62550615) from the Japan Ministry of Education, Science and Culture and by the Yoshida Society for Promotion of Science.

References

 For example : T. D. Devon and A. I. Scott, "Handbook of Naturally Occurring Compound," Academic Press, New York (1972), Vol. 2, p. 154.

- 2) C. Heathcock, S. L. Graham, M. C. Pirrung, F. Plavac, and C. T. White, "The Total Synthesis of Natural Products," ed by J. ApSimon, John-Willy & Sons, New York (1983), Vol. 5, p. 172, 404.
- 3) T. Minami, Y. Kitajima, and T. Chikugo, Chem. Lett., 1986, 1229.
- 4) The butenolide <u>lb</u> was prepared in 93% yield from α -diethoxyphosphinyl- γ -valerolactone according to the established method.³⁾ The butenolide <u>lb</u> is rather stable than <u>la</u>.
- 5) <u>3a</u>: oil; IR (neat) 1760, 1730, 1695 cm⁻¹; ¹H NMR (CDCl₃) δ 1.27(t, J=7.1 Hz, 6H, Me), 2.06(br s, 3H, Me), 3.20-3.44(br d, 2H, CH₂), 3.84(d, J=1.5 Hz, 1H, CH), 4.00-4.44(q, J=7.1 Hz, 4H, OCH₂CH₃), 4.51(d, J=4.0 Hz, 2H, OCH₂); HRMS Found : m/z 282.1097, Calcd for C₁₄H₁₈O₆; M⁺, m/z 282.1102.
 - 3g: oil; IR (neat) 1760, 1730, 1680 cm⁻¹; ¹H NMR (CDCl₃) δ 1.24 and 1.35(t, J=7.1 Hz, 6H, Me), 1.72-2.70(m, 4H, CH₂), 3.08-3.64(m, 1H, CH), 4.00-4.44(2q, J=7.1, 7.1 Hz, 4H, O<u>CH₂CH₃</u>), 4.55(s, 1H, one of OCH₂), 4.70(d, J=1.0 Hz, one of OCH₂), 6.79(t, J=3.5 Hz, olefinic H); ¹³C NMR (CDCl₃) δ 13.9, 24.0, 28.6, 40.7, 54.0, 61.5, 61.8, 68.8, 126.5, 134.8, 167.7, 168.8, 170.0; HRMS Found : m/z 282.1066, Calcd for C₁₄H₁₈O₆; M⁺, m/z 282.1102. All the other products 3a-f,h similarly gave satisfactory spectral data (IR, ¹H and ¹³C NMR, Exact mass).
- 6) <u>6a</u>: oil; IR (neat) 3400 (OH), 1770 cm⁻¹ (C=O); ¹H NMR (CDCl₃) δ 1.36(t, J=7.0 Hz, 6H, Me), 1.56(d, J=6.6 Hz, 3H, CH<u>Me</u>), 1.80-2.30(m, 5H, CH₂, CH), 2.50-3.32 (m, 5H, SCH₂, OH), 3.90-4.50(m, J=7.0 Hz, 4H, O<u>CH₂CH₃</u>), 4.50-5.30(m, 2H, OCH); MS m/z 396 (M⁺).

6b: oil; IR (neat) 1770 (lactone C=O), 1720 cm⁻¹ (CHO) ; MS m/z 396 (M⁺).

7) 7a: oil; IR (neat) 1755, 1650 cm⁻¹; ¹H NMR (CDCl₃) δ 1.56(d, J=5.7 Hz, 3H, Me), 1.70-2.30(m, 2H, CH₂), 2.60-3.16(m, 4H, SCH₂), 3.30-3.70(m, 3H, CH₂, CH), 4.64-5.16(m, 1H, O<u>CH</u>Me), 6.51(q, J=5.7 Hz, 1H, olefinic H); HRMS Found : m/z 242.0427, Calcd for C₁₁H₁₄O₂S₂; M⁺, m/z 242.0435.

7d: oil; IR (neat) 1765, 1650 cm⁻¹; ¹H NMR (CDCl₃) δ 1.57(d, J=6.1 Hz, 3H, Me), $\widetilde{1.70-3.50}$ (m, 5H, CH₂, CH), 3.92-4.48(m, 1H, OCHMe), 6.61(q, J=2.6 Hz, 1H, olefinic H).

(Received September 21, 1987)