Enhanced Cram Selectivity in Carbonyl Alkylation *via* 'Naked' Anions and anti-Cram Selectivity *via* 'Naked' Cuprates

Yoshinori Yamamoto* and Koshin Matsuoka

Department of Chemistry, Faculty of Science, Tohoku University, Sendai 980, Japan

Enhanced Cram selectivity is observed *via* the reaction of aldehydes (1) with 'naked' anions (2) prepared *in situ* from RM and Bu_4NBr , while anti-Cram selectivity results from the reaction of (1) with 'naked' cuprates (4) prepared *in situ* from R_2CuLi and Bu_4NBr .

We reported recently that the Cram selectivity in carbonyl alkylation reactions is enhanced with RLi (or RMgX)–crown reagents, while the anti-Cram isomer is produced preferentially with cuprate–crown reagents.¹ We expected that the complexation of M⁺ by crown-type compounds would produce the observed stereoselectivity. If that were the case, a 'naked' anion would enhance Cram selectivity and a 'naked' cuprate would produce anti-Cram selectivity. We report that enhanced Cram selectivity is realized *via* the reaction of aldehydes (1) with (2) ('naked' anion) prepared *in situ* from RM and Bu₄NBr and that anti-Cram selectivity is produced through the reaction of (1) with (4) ('naked' cuprate) prepared *in situ* from R₂CuLi and Bu₄NBr. The results are summarized in Table 1.

Cram selectivity in the reaction of (1; $R^1 = Ph$) with R^2M (M = Li, MgX, \cdots) is normally in the range 5:1–1:1.^{1,2} Accordingly, use of (2) evidently enhances the Cram selectivity (entries 1–5, Table 1), though the extent of the enhancement is not so high as with the RM-crown reagents. Further, use of BF₃ enhances the Cram selectivity (entry 2 vs. 1, Table 1), presumably owing to change of the directionality of -Bu +NBu₄ attack towards the RCHO-BF₃ complex. With other aldehydes (1; $R^1 = C_6H_{11}$), the extent of the enhancement is small (entry 8); the ratio in the reaction with BuLi itself was 2.9:1. In the case of 2-benzylpropanal, no enhancement is observed (entry 10); the ratio with BuLi was 1:1.

The anti-Cram isomer is produced preferentially by using (4) regardless of the structure of the aldehyde (entries 6, 9,

Table 1. Enhanced Cram selectivity via $RNBu_4$ and anti-Cram selectivity via R_2CuNBu_4 .^a

-	Aldehyde (1)	(2)	(4)	Product ratio ^b	Total yield, ^b
Entry	\mathbf{R}^{1}	\mathbb{R}^2	\mathbb{R}^2	(3):(5)	%
1	Ph	Bu		6:1	100
2	Ph	Bu		8:1	93
3	Ph	Etd		8:1	100
4	Ph	Me		6:1	100
5	Ph	Me		5:1	83
6	Ph		Bu	1:1.9	72
7	Ph		Bu ₂ CuLi	3:1	99
8	$C_{6}H_{11}$	Bu	-	3.4:1	87
9	$C_{6}H_{11}$		Bu	1:1.5	14 ^f
10	PhCH ₂	Bu		1:1	100
11	$PhCH_{2}$		Bu	1:1.6	62

^a All reactions were carried out on 1 mmole scale under argon. When the total yield was not 100%, the rest was recovered aldehyde and/or reduction product. ^b Determined by capillary g.l.p.c. [poly(ethylene glycol), 25 m]. ^c One equiv. of BF₃–OEt₂ was added at -78 °C. ^d EtMgBr or MeMgBr was used. Normally, alkyl-lithiums were used except where otherwise indicated. ^e The aldehyde was treated with Bu₂CuLi itself. ^f A major product was the reduced alcohol, 2-cyclohexylpropanol.

and 11; especially entry 6 νs . 7). This is synthetically very important, since only two methods have hitherto been available to obtain the anti-Cram isomer predominantly.^{1,3} Normally, tetrabutylammonium bromide was used to produce (2) and (4). Tetrabutylammonium chloride and iodide worked similarly, but the anti-Cram selectivity was somewhat lower with these reagents.

The naked cuprate (4) was usually prepared at $-78 \,^{\circ}$ C by adding R₄NBr to a solution of lithium cuprate in tetrahydrofuran (THF). Interestingly, (4) could be also prepared by adding 2 equiv. of RLi to a THF suspension of CuI (1 equiv.) and Bu₄NBr (1 equiv.). The latter method is operationally more convenient. The naked anion (2) was prepared at $-78 \,^{\circ}$ C by adding RLi or RMgX to a THF suspension of Bu₄NBr.

The present development clearly indicates that the effect of crown-type compounds¹ is due to the inclusion of metal cations. Synthetically, the ammonium method is cheaper than the crown method. Mechanistically, the anti-Cram selectivity seems to be a reflection of a radical intermediate as suggested previously,¹ since the reduced product is frequently formed as a by-product.

Received, 15th December 1986; Com. 1775

References

- 1 Y. Yamamoto and K. Maruyama, J. Am. Chem. Soc., 1985, 107, 6411.
- 2 Y. Yamamoto, T. Komatsu, and K. Maruyama, J. Organomet. Chem., 1985, 285, 31.
- 3 K. Maruoka, T. Itoh, and H. Yamamoto, J. Am. Chem. Soc., 1985, 107, 4573.