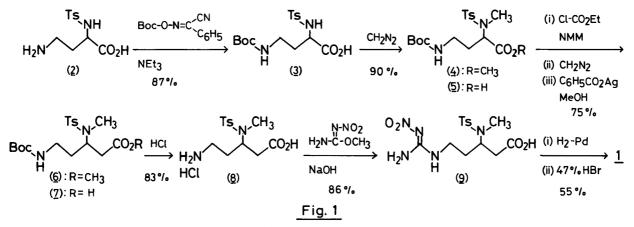
CHEMISTRY LETTERS, pp.589-590, 1978. Published by the Chemical Society of Japan

SYNTHESIS OF $N^\beta\text{-}METHYL\text{-}L\text{-}\beta\text{-}ARGININE$, a component amino acid in a new antibiotic ll-bm547b

Shinya NOMOTO and Tetsuo SHIBA Department of Chemistry, Faculty of Science, Osaka University, Toyonaka, Osaka 560


First synthetic method for preparation of N-methyl guanidino β -amino acid was established. Thus, N^{β} -methyl-L- β -arginine, a component of the antibiotic LL-BM547 β , was synthesized from N^{γ} -t-butoxycarbonyl- N^{α} -tosyl-L- α , γ -diaminobutyric acid through a successive reaction of N^{α} -methylation of tosylamino group with diazomethane, the Arndt-Eistert synthesis, and guanidination of the ω -amino group. The synthetic product was identical with the natural amino acid with respect to a specific rotation and NMR spectrum.

The antituberculous peptides, viomycin,¹⁾ capreomycins²⁾ and tuberactinomycins,³⁾ bear commonly L- β -lysine or γ -hydroxy-L- β -lysine as a branch attached to analogous cyclic pentapeptide moieties. Recently, N^{β}-methyl-L- β -arginine (<u>1</u>) as a new amino acid at the corresponding branch position was found by W. J. McGahren *et al.*⁴⁾ in the hydrolyzate of antibiotic LL-BM547 β whose cyclic peptide moiety was the same as that of tuberactinomycin A and B (viomycin).³⁾ In this communication we wish to report a synthesis of this new guanidino amino acid (<u>1</u>).

In the synthetic procedure (Fig.1), N-methylation of tosylamino group must precede the Arndt-Eistert reaction, since a tosylamino group is reactive enough toward a mixed anhydride of an intermediate in the latter reaction. On the other hand, guanidination of ω -amino group should be carried out preferably after the Arndt-Eistert synthesis to avoid a possible lactam formation which actually occurred in the activation of carboxyl group in arginine.

After t-butoxycarbonylation of γ -amino group in N^{α}-tosyl-L- α , γ -diaminobutyric acid (2),⁵) selective N^{α}-methylation of N^{α}-tosyl-N^{γ}-t-butoxycarbonyl derivative <u>3</u> was performed by the use of diazomethane in ether at 0°C for 10 h to give an oily N-methylated product <u>4</u>, pmr (CDCl₃): $\delta 2.82$ (s, 3H, N^{α}-CH₃), 5.10 (br.t, 1H, γ -NH). This new procedure employing diazomethane for N-tosylamino acid provides a mild and simple method for preparation of N-monomethyl amino acid derivatives compared to the hitherto method with methyl iodide and alkali. Saponification of the ester group in <u>4</u> afforded a crystalline carboxylic acid <u>5</u> in 89% yield, mp 122-3°C. The Arndt-Eistert reaction for <u>5</u> was conducted as previously reported⁶) to give an oily β-ornithine derivative <u>6</u>, which was then saponified to afford a crystalline carboxylic acid 7, yield, 87%, mp 125-7°C.

In the next step of the synthesis, t-butoxycarbonyl group of $\underline{7}$ was selectively

Abbreviations ; Boc : t-butoxycarbonyl , Ts : tosyl , NMM : N-methylmorpholine.

removed with 4N HCl in THF, product (8) being precipitated from the reaction mixture, mp 209°C (dec). Compound 8 was then treated with O-methyl-N-nitroisourea in 2N NaOH at 0°C for 1 h to yield a crystalline N^B-methyl-B-arginine derivative 9, mp 222-3°C. Finally, the nitro group in 9 was removed by catalytic reduction in acetic acid and then the product, without being isolated, was heated under reflux in 47% HBr for 3 h to remove the tosyl group. The product was applied to a column (1.9 x 30 cm) of Amberlite IRC 120 (H⁺ form) and eluted with 3N HCl to afford the expected amino acid dihydrochloride, being positive for both Sakaguchi and ninhydrin reactions, as an oily material as reported.⁴⁾ It showed a specific rotation [+18° (H₂O); 1it.⁴⁾ +20° ±2 (H₂O)] and an NMR spectrum in good agreements with those of the natural N^B-methyl-L-B-arginine.⁴⁾ Furthermore, a crystalline diflavianate of the synthetic product was identified by elemental analysis, Found: C, 39.68; H, 3.41; N, 13.65; S, 7.88%. Calcd. for $C_7H_{16}N_4O_2 \cdot 2$ ($C_{10}H_6N_2O_8S$): C, 39.71; H, 3.46; N, 13.72; S, 7.85%.

This novel synthesis may offer an assured method for syntheses of other N-methyl guanidino amino acids such as blastidic $acid^{7}$ and stendomycidine⁸ which are involved in biologically important natural products.

References

- 1) T. Noda, T. Take, A. Nagata, T. Wakamiya, and T. Shiba, J. Antibiotics, <u>25</u>, 427 (1972).
- 2) S. Nomoto, T. Teshima, T. Wakamiya, and T. Shiba, J. Antibiotics, <u>30</u>, 955 (1977).
- H. Yoshioka, T. Aoki, H. Goko, K. Nakatsu, T. Noda, H. Sakakibara, T. Take,
 A. Nagata, J. Abe, T. Wakamiya, T. Shiba, and T. Kaneko, Tetrahedron Lett., <u>1971</u>, 2043.
- 4) W. J. McGahren, G. O. Morton, M. P. Kunstmann, and G. A. Ellestad, J. Org. Chem., <u>42</u>, 1282 (1977).
- 5) J. Rudinger, K. Poduska, and M. Zaoral, Collect. Czech. Chem. Commun., <u>25</u>, 2022 (1960).
- T. Wakamiya, H. Uratani, T. Teshima, and T. Shiba, Bull. Chem. Soc. Jpn., <u>48</u>, 2401 (1975).
- 7) N. Otake, S. Takeuchi, T. Endo, and H. Yonehara, Tetrahedron Lett., 1965, 1411.
- 8) M. Bodanszky, G. Marconi, and A. Bodanszky, J. Antibiotics, 22, 40 (1969).