Preliminary communication

Nitroxide spin-labelling of amino and carboxyl groups of monosaccharide derivatives, mediated by dicyclohexylcarbodiimide

LIANE EVELYN and LAURANCE D. HALL

Department of Chemistry, University of British Columbia, Vancouver, B.C., V6T1W5 (Canada) (Received December 13th, 1978; accepted for publication, December 29th, 1978)

Although the major thrust of our studies of sugars by the spin-labelling method¹ has thus far been directed to polysaccharide systems², there is a pressing need for further methods³ whereby monosaccharides can be covalently spin-labelled. In the present Communication, we report the use and limitations of dicyclohexylcarbodiimide (1) for coupling sugars and piperidin-1-oxyl derivatives *via* an amide linkage.

In a typical reaction, methyl 3,4,6-tri-O-acetyl-2-amino-2-deoxy- β -D-glucopyranoside⁴ (2) was treated with 4-carboxy-2,2,6,6-tetramethylpiperidin-1-oxyl (3, 1.1 molar equiv.) and 1 (1.2 molar equiv.) in dry dichloromethane for 1 h at 0°, and subsequently for 16 h at 20°. Conventional processing⁵, followed by column chromatography on alumina, afforded, in addition to the anticipated product (4)* {52% yield, m.p. 139°, $[\alpha]_{\rm D}^{25}$ +6.8° (c 1.6, CHCl₃)}, the N-acylurea derivative 5 (21% yield, m.p. 185°).

In like fashion, two products were formed from the reaction of 4-amino-2,2,6,6-tetramethylpiperidin-1-oxyl (6) with uronic acids. Thus, 1,2:3,4-di-O-isopropylidene- α -D-galactopyranuronic acid⁶ (7) reacted with 6 in the presence of 1 to give the N-acylurea 8 in 12% yield {m.p. 132°, $[\alpha]_D^{25} -94.5^\circ$ (c 0.5, CHCl₃)}, along with the desired product 9 in 47% yield; m.p. 167°, $[\alpha]_D^{25} -100.9^\circ$ (c 1.1, CHCl₃).

Although the yields of spin-labelled sugars obtained in this way are acceptable, the formation of N-acylurea by-products, which is characteristic⁷ of dicyclohexylcarbodiimidemediated coupling-reactions involving sterically hindered reactants (in this case, the nitroxides 3 and 6), constitutes a limitation to this approach to spin-labelling of sugars.

We routinely use high-resolution 1 H- and 13 C-n.m.r. spectroscopy to characterize spin-labelled sugars, following reduction⁸ with aqueous sodium dithionite (Na₂S₂O₄).

^{*}All compounds reported herein had elemental, microanalytical data in accord with the structures assigned.

6 R = --- NH2

ACKNOWLEDGMENT

This work was supported by operating grants from the National Research Council of Canada (A 1905 to L.D.H.).

REFERENCES

- 1 L. J. Berliner (Ed.), Spin Labeling, Theory and Applications, Academic Press, New York, 1976.
- 2 J. D. Aplin and L. D. Hall, J. Am. Chem. Soc., 99 (1977) 4162-4163; Carbohydr. Res., 59 (1977) C20-C24; L. D. Hall and J. D. Aplin, J. Am. Chem. Soc., 100 (1978) 1934-1936.
- 3 W. G. Struve and H. M. McConnell, Biochem. Biophys. Res. Commun., 49 (1972) 1631-1637;
 H. W. Wien, J. D. Morrisett, and H. M. McConnell, Biochemistry, 11 (1972) 3707-3716; B. J. Gaffney in ref. 1; J. M. J. Tronchet, E. Mihaly, and M. Geoffroy, Helv. Chim. Acta, 58 (1975) 1187-1191;
 D. Gagnaire and L. Odier, Bull. Soc. Chim. Fr., 11 (1974) 2325-2328.
- 4 J. C. Irvine, D. McNicoll, and A. Hynd, J. Chem. Soc., 99 (1911) 250-261.
- 5 Y. S. Klausner and M. Bodansky, Synthesis, (1972) 453-463; J. C. Sheehan and D. D. H. Yang, J. Am. Chem. Soc., 80 (1958) 1154-1158.
- 6 H. Ohle and G. Berend, Ber., 58 (1925) 2585-2589.
- 7 D. F. DeTar, R. Silverstein, and E. F. Rogers, Jr., J. Am. Chem. Soc., 88 (1966) 1024-1030.
- 8 B. J. Gaffney, in ref. 1; L. D. Colebrook, L. Evelyn, and L. D. Hall, to be published.