Die Makromolekulare Chemie 177, 351-357 (1976)

Institut für Organische Chemie der Freien Universität Berlin, Berlin 33 (Dahlem), Thielallee 63–67

Polymere Bis(oxazolo)pyrene

Synthesen und Charakterisierung von Poly(2,8-oxazolo[2',3':7,8]pyreno[4,5-d]oxazoldiyl-1,4-phenylen)en und einigen dazugehörigen Modellverbindungen

Gregor Wehr

(Eingangsdatum: 21. Mai 1975)

ZUSAMMENFASSUNG:

Durch Reaktion von 4,5,9,10-Pyrendichinon mit verschiedenen aromatischen Dialdehyden wurden neuartige Polyoxazole synthetisiert. Ihre Struktur wurde durch Vergleich ihrer IR-Spektren mit denjenigen von entsprechend aufgebauten niedermolekularen Modellsubstanzen bestätigt. Die Thermostabilität der Polymeren wurde untersucht.

SUMMARY:

Some new polyoxazoles were synthesized by reaction of 4,5,9,10-pyrene diquinone with different aromatic dialdehydes. Their structure was confirmed by comparing their IR-spectra with those of some corresponding low molecular model compounds. The thermal stability of the polymers was investigated.

Einleitung

Die Darstellung von Polybenzoxazolen war bereits Gegenstand einer Anzahl früherer Veröffentlichungen¹⁻⁸⁾. Diese heterocyclischen Polymeren sind wegen ihrer hervorragenden Thermostabilität von besonderem Interesse. Ihre Synthese erfolgte üblicherweise durch Reaktion von Bis(2-aminophenolen) mit Dicarbonsäuren bzw. deren Derivaten.

In der vorliegenden Arbeit werden polymere Oxazole mit Oxazolopyrenooxazol-Einheiten in der Polymerkette erstmals dargestellt und untersucht. Gleichzeitig werden entsprechend aufgebaute niedermolekulare Modellverbindungen beschrieben mit Hilfe deren IR-Spektren die Strukturaufklärung der polymeren Oxazole erfolgte.

Synthesen der Modellverbindungen

Nach einer einfachen Vorschrift von Schiedt⁹⁾ erhält man durch Reaktion von o-Chinonen mit aromatischen Aldehyden in Gegenwart von Formamid Oxazole. Analog wurden einige Oxazole bzw. Bisoxazole als Modellsubstanzen für entsprechend aufgebaute Polymere neu dargestellt. So wurde 4,5-Pyrenchinon in Formamid mit Benzaldehyd, p-Chlorbenzaldehyd und Anisaldehyd zu 2-Phenylpyreno[4,5-d]oxazol (1a), 2-(4-Chlorphenyl)pyreno[4,5-d]oxazol (1b) bzw. 2-(p-Anisyl)pyreno[4,5-d]oxazol (1c) umgesetzt.

Durch Umsetzung von 4,5,9,10-Pyrendichinon in Formamid mit Benzaldehyd, 2,5-Dichlorbenzaldehyd und 2,5-Dimethoxybenzaldehyd wurden 2,8-Diphenyloxazolo[2',3':7,8]pyreno[4,5-d]oxazol (**2a**), 2,8-Bis(2,5-dichlorphenyl)oxazolo[2',3':7,8]pyreno[4,5-d]oxazol) (**2b**) und 2,8-Bis(2,5-dimethoxyphenyl)oxazolo[2',3':7,8]pyreno[4,5-d]oxazol) (**2c**) oder die entsprechenden Isomeren erhalten.

Bei den Bis(oxazolo)pyrenen 2a-c (entsprechendes gilt auch für die Polymeren 3a-c) sind theoretisch jeweils zwei isomere Formen möglich, nämlich eine Form mit den beiden Oxazolringen in *trans*-Stellung (s. Formelbild) bzw. eine mit den beiden Oxazolringen in *cis*-Stellung (Oxazolo[3',2':7,8]pyreno[4,5-d]oxazol). Um welches Isomere es sich bei den Verbindungen 2a-chandelt, war nicht zu klären. Die Synthese der Verbindungen 1 und 2 verlief glatt. Die Substanzen waren dünnschichtchromatographisch einheitlich (Laufmittel: Xylol-Äthanol 1:1). Sie wurden mit Hilfe der Elementaranalysen sowie der Massenspektrometrie charakterisiert.

Synthese der Polymeren

Der Einsatz bifunktioneller Derivate (Dichinon und Dialdehyd) bei der Reaktion nach *Schiedt*⁹⁾ führte zu Polymeren. Zur Synthese der polykonjugierten Polyoxazole, Poly(2,8-oxazolo[2',3':7,8]pyreno[4,5-d]oxazoldiyl-1,4-phenylen)e (**3a, b** und c) wurde 4,5,9,10-Pyrendichinon mit Terephthalaldehyd, 2,5-Dichlorterephthalaldehyd und 2,5-Dimethoxyterephthalaldehyd in Formamid bei 170 °C in einer Stickstoff-Atmosphäre 5 h umgesetzt.

Die nach erschöpfender Extraktion mit Äthanol, Chloroform und Chlorbenzol in guter Ausbeute erhaltenen Polymeren 3a-c sind dunkelbraune bis schwarze Pulver und in allen gebräuchlichen organischen Lösungsmitteln unlöslich. Äußerst gering ist die Löslichkeit von offenbar niedermolekularen Anteilen in *m*-Kresol, Hexafluor-2-propanol sowie in konz. Schwefelsäure. Auf Grund ihrer Unlöslichkeit können keine Angaben über die Molekulargewichte der Polymeren gemacht werden.

IR-Spektren

Die große Ähnlichkeit bzw. Übereinstimmung typischer Absorptionsbanden in den IR-Spektren der Polymeren **3a–c** mit denen der Modellverbindungen **1** und **2** bestätigt eindeutig die Struktur der Polymeren. So tritt bei 1610 cm^{-1} mit starker Intensität die charakteristische Bande für die C=N- bzw. C=C-Valenzschwingung auf, und im Bereich von 1270 bzw. 1050 cm⁻¹ erscheinen mit geringerer Intensität die Valenzschwingungen der =C-O-C-Gruppierung. Das Fehlen einer C=O-Valenzschwingungsbande in den IR-Spektren der Polymeren **3a–c** macht eine vollständige Umsetzung der Reaktionspartner wahrscheinlich. Die Valenzschwingungen für die Methoxygruppen im Polymeren **3c** werden durch ein Signal bei 2830 cm⁻¹ angezeigt.

Massenspektren

Die Massenspektren bestätigen die Struktur der Verbindungen 1 und 2 durch das Auftreten für sie typischer Fragmentionen. In den Spektren der Verbindungen 1 und 2 werden außer den jeweiligen Molpeaks auch einige Peaks für die Massen charakteristischer Bruchstücke gefunden, wie z. B. C₁₅H⁺₈, $C_{16}H_8N^+$ und $C_{14}H_6^+$. Wie für kondensierte aromatische Systeme typisch, zeigen die Verbindungen 1 und 2 nur eine geringe Fragmentierungstendenz. Das Molekülradikalion von la zerfällt einerseits durch Abspaltung von C₆H₅CO (M-105), and ererse its durch simultane Abspaltung von Benzonitril und CO als gute Abgangsgruppen (M-131). Das Molekülradikalion von 2a zeigt keine Benzoylabspaltung, sondern es spaltet zweimal Benzonitril in Verbindung mit CO $[M-131(=C_6H_5CN+CO)][M-262(=2(C_6H_5CN+CO))]$ ab. Auffallend in den MS-Spektren 1a und 2a ist das Auftreten zweifach geladener Molekülpeaks M²⁺ mit großer Intensität, vergleichbar mit den Schlüsselbruchstücken M-131 und M-262. M²⁺-Peaks werden bei ausgedehnten aromatischen Systemen und der Anwesenheit von Heteroatomen häufig beobachtet. Der Molekülpeak von 1a und 2a ist Basispeak, dessen Stabilität auch durch die hohe Intensität des M²⁺-Ions bestätigt wird. Die in den Grundsystemen 1a und 2a nachweisbaren Fragmentierungswege bestimmen auch die Massenspektren der Verbindungen 1b, 1c, 2b und 2c.

Thermische Analyse

Die Differentialthermoanalysen der Polymeren wurden unter Stickstoff bzw. Luft mit einer Aufheizgeschwindigkeit von 2°C/min (von Raumtemperatur bis auf 800°C) mit einem Mettler Thermoanalyser 2 durchgeführt.

In den Thermogrammen der Polymeren **3a-c** treten mit steigender Temperatur keine endothermen Zersetzungsreaktionen auf.

Das Polymere **3a** weist unter Stickstoff bis 450 °C Gewichtskonstanz auf. Oberhalb dieser Temperatur findet ein kontinuierlich zunehmender, vollständiger exothermer Abbau statt, der bei 600 °C sein Maximum hat und bei 780 °C vollständig beendet ist. Unter Luft zeigt **3a** bis 430 °C Gewichtskonstanz. Dann folgt rascher oxidativer Abbau, der bei 530 °C am stärksten und bei 570 °C beendet ist.

Die Polymere **3b** und **3c** zeigen unter Stickstoff bis 400 °C Gewichtskonstanz, dann erfolgt im Gegensatz zu **3a** ein wesentlich langsamerer exothermer Abbau. Bei 800 °C sind **3b** bzw. **3c** nicht vollständig abgebaut. Wahrscheinlich handelt es sich bei den Rückständen von **3b** und **3c** um Graphitisierungsprodukte. Der Graphitisierungsrückstand von **3c** besitzt eine spezifische elektrische Leitfähigkeit von $\sigma_{298K} = 1,4 \cdot 10^{-4} \Omega^{-1} \text{ cm}^{-1}$ bei einer thermischen Aktivierungsenergie von E = 0,27 eV. In einer Stickstoff-Atmosphäre weist das Polymere **3b** bzw. **3c** bei 800 °C einen Gewichtsverlust von 28% bzw. 61% auf. Die Chlor- bzw. Methoxygruppen in den Polymeren **3b** und **3c** bewirken also eine günstigere Graphitisierung. **3b** und **3c** sind unter Luft bis 370 °C stabil. Beide sind bei 550 °C praktisch vollständig abgebaut.

Experimenteller Teil

Die Schmelzpunkte wurden mit einem Heizmikroskop nach Kofler bestimmt.

Die IR-Spektren wurden mit einem Perkin-Elmer Spektrometer 257 von KBr-Preßlingen aufgenommen (Fehlergrenze etwa $\pm 5 \text{ cm}^{-1}$).

Die MS-Spektren wurden mit dem Varian-Gerät MAT CH5-DF und einer Elektronenstoßionisation von 70 eV aufgenommen.

2-Phenylpyreno[4,5-d]oxazol (1a): 500 mg (2,15 mmol) 4,5-Pyrenchinon und 228 mg (2,15 mmol) Benzaldehyd in 50 ml Formamid wurden 2 h bei 170 °C gerührt. Nach Abkühlung wurde der Niederschlag abgesaugt, mit Äthanol gewaschen und aus Xylol umkristallisiert. Hellgelbe Kristalle; Schmp 256 °C. Ausb. 0,5 g (\approx 73%).

MS: m/e: 319 (100) (C₂₃H₁₃NO) (M⁺); 214 (5) (C₁₆H₈N⁺); 188 (33) (C₁₅H⁺₈); 159,5 (18) (M²⁺).

C ₂₃ H ₁₃ NO (319,4)	Ber.	C 86,49	H 4,10	N 4,40
	Gef.	C 86,27	H 4,03	N 4,64

2-(4-Chlorphenyl)pyreno[4,5-d]oxazol (1b): 500 mg (2,15 mmol) 4,5-Pyrenchinon und 300 mg (2,15 mmol) p-Chlorbenzaldehyd wurden wie bei 1a umgesetzt. Hellgelbe Kristalle; Schmp 260–262 °C (aus Xylol). Ausb. 310 mg (\approx 41%).

C ₂₃ H ₁₂ ClNO (353,8)	Ber.	C 78,08	H 3,41	N 3,95	Cl 10,02
	Gef.	C 78,23	H 3,33	N 3,82	Cl 10,24

2-(*p*-Anisyl)pyreno[4,5-d]oxazol (1c): 500 mg (2,15 mmol) 4,5-Pyrenchinon und 292 mg (2,15 mmol) Anisaldehyd wurden wie bei 1a umgesetzt. Gelbe Kristaile; Schmp 213–215 °C (aus Xylol). Ausb. 340 mg (\approx 45%).

C ₂₄ H ₁₅ NO ₂ (349,4)	Ber.	C 82,51	H 4,32	N 4,01
	Gef.	C 82,41	H 4,46	N 3,97

2,8-Diphenyloxazolo[2',3':7,8]pyreno[4,5-d]oxazol(2a): 500 mg (1,91 mmol) 4,5,9,10-Pyrendichinon und 500 mg (4,71 mmol) Benzaldehyd in 50 ml Formamid wurden auf 140 °C erhitzt, 40 min gerührt, und die heiße Lösung wurde filtriert. Der Rückstand wurde mit Äthanol gewaschen und aus Xylol umkristallisiert. Im Dünnschichtchromatogramm erscheint 1 Fleck. Schmp > 350 °C. Ausb. 580 mg (\approx 70%). G. Wehr

MS: m/e: 436 (100) (C₃₀H₁₆N₂O₂) (M⁺); 305 (20) (C₂₂H₁₁NO⁺); 218 (30) (M²⁺); 174 (22) (C₁₄H₆⁺).

 $C_{30}H_{16}N_2O_2$ (436,5) Ber. C 82,55 H 3,69 N 6,41 Gef. C 82,25 H 3,89 N 6,44

2,8-Bis(2,5-dichlorphenyl)oxazolo[2',3':7,8]pyreno[4,5-d]oxazol (2b): 500 mg (1,91 mmol) 4,5,9,10-Pyrendichinon und 670 mg (3,82 mmol) 2,5-Dichlorbenzaldehyd wurden wie bei 2a umgesetzt. Braune Kristalle; Schmp > 350 °C; Ausb.: 285 mg ($\approx 26\%$).

 $\begin{array}{ccc} C_{30}H_{12}Cl_4N_2O_2 \mbox{ (574,3)} & \mbox{Ber.} & C \mbox{ 62,75} & \mbox{H} \mbox{ 2,11} & \mbox{N} \mbox{ 4,88} & \mbox{Cl} \mbox{ 24,69} \\ & \mbox{Gef.} & \mbox{C} \mbox{ 62,87} & \mbox{H} \mbox{ 2,20} & \mbox{N} \mbox{ 5,45} & \mbox{Cl} \mbox{ 24,48} \end{array}$

2,8-Bis(2,5-dimethoxyphenyl)oxazolo[2',3':7,8]pyreno[4,5-d]oxazol (2c): 500 mg (1,91 mmol) 4,5,9,10-Pyrendichinon und 635 mg (3,82 mmol) 2,5-Dimethoxybenzaldehyd wurden in 50 ml auf 150 °C erhitzt und 35 min gerührt. Das Reaktionsprodukt wurde sofort abfiltriert, mit Äthanol gewaschen und aus Xylol umkristallisiert. Rosafarbene Kristalle; Schmp 315–317 °C. Ausb. 530 mg (\approx 50%).

$C_{34}H_{24}N_2O_6$ (556,6)	Ber.	C 73,37	H 4,34	N 5,03
	Gef.	C 72,96	H 4,38	N 4,90

Poly(2,8-oxazolo[2',3':7,8]pyreno[4,5-d]oxazoldiyl-1,4-phenylen) (3a): 500 mg (1,91 mmol) 4,5,9,10-Pyrendichinon und 256 mg (1,91 mmol) Terephthalaldehyd wurden in 70 ml Formamid unter Stickstoff auf 170 °C erhitzt und 5h gerührt. Das braune Polymere wurde abgesaugt und intensiv mit Äthanol gewaschen. Anschließend wurde das Polymere im Soxhlet-Apparat erschöpfend mit Chloroform bzw. Chlorbenzol extrahiert. Ausb. 450 mg ($\approx 66\%$).

 $\begin{array}{cccc} (C_{24}H_{10}N_2O_2)_n & (358,4)_n & \text{Ber.} & C & 74,58 & H & 2,73 & N & 7,26 \\ & & Gef. & C & 74,72 & H & 3,09 & N & 8,38 \end{array}$

 $Poly\{2,8-oxazolo[2',3':7,8]pyreno[4,5-d]oxazoldiyl-(2,5-dichlor-1,4-phenylen)\}$ (3b): 1,0 g (3,82 mmol) 4,5,9,10-Pyrendichinon und 775 mg (3,82 mmol) 2,5-Dichlorterephthalaldehyd wurden wie bei 3a umgesetzt und aufgearbeitet. Ausb. 490 mg ($\approx 30\%$).

 $\begin{array}{cccc} (C_{24}H_8Cl_2N_2O_2)_n \ (427,3) & \text{Ber.} & C \ 67,47 & H \ 1,88 & N \ 6,55 & Cl \ 16,59 \\ & & \text{Gef.} & C \ 66,90 & H \ 2,48 & N \ 6,34 & Cl \ 14,10 \end{array}$

 $\begin{array}{l} Poly\{2,8-oxazolo[2',3':7,8] pyreno[4,5-d] oxazoldiyl-(2,5-dimethoxy-1,4-phenylen)\} (3c): \\ 1,0 g \ (3,82 \, mmol) \ 4,5,9,10-Pyrendichinon \ und \ 740 \, mg \ (3,82 \, mmol) \ 2,5-Dimethoxytere-phthalaldehyd wurden wie bei$ **3a** $umgesetzt und aufgearbeitet. Ausb. 1,3 g (<math>\approx$ 81%). \end{array}

$(C_{26}H_{14}N_2O_4)_n$ (418,4)	Ber.	C 74,63	Н 3,37	N 6,69
	Gef.	C 70,69	H 3,49	N 7,63

Ich danke Herrn Prof. Dr. G. Koßmehl wie auch Herrn Dr. G. Holzmann für die Aufnahme und Interpretation der Thermogramme bzw. MS-Spektren.

- ¹⁾ Brit. P. 811758 (1959); E. J. du Pont de Nemours & Co.; C. A. 53, 14582b (1959)
- ²⁾ T. Kubota, R. Nakanishi, J. Polym. Sci., Part B, 6, 655 (1964)
- ³⁾ V. S. Yakubovich, G. V. Myasnikova, G. J. Braz, A. Ya. Yakubovich, Dokl. Akad. Nauk SSSR **159**, 630 (1964)
- ⁴⁾ W. W. Moyer, C. Cole, T. Anyos, J. Polym. Sci., Part A, 3, 2107 (1965)
- ⁵⁾ Y. Imai, I. Taoka, K. Uno, Y. Iwakura, Makromol. Chem. 83, 167 (1965)
- ⁶⁾ R. D. Stacy, N. P. Loire, H. H. Levine, Polym. Prepr., Amer. Chem. Soc., Div. Polym. Chem. 7, 161 (1966)
- ⁷⁾ S. Inoue, Y. Imai, K. Uno, Y. Iwakura, Makromol. Chem. **95**, 236 (1966)
- ⁸⁾ V. V. Korshak, G. M. Tseitlin, A. J. Pavlov, Izv. Akad. Nauk SSSR, Ser. Khim. 10, 1912 (1965); Bull. Acad. Sci. USSR 1965, 1885
- ⁹⁾ B. Schiedt, J. Prakt. Chem. 157, 203 (1941)