SYNTHESIS OF (\pm) SULPHORAPHENE¹

K. BALENOVIĆ, A. DELJAC, I. MONKOVIĆ² and Z. ŠTEFANAC Chemical Laboratory, Faculty of Science, University of Zagreb Strossmayerov trg 14, Zagreb, Yugoslavia

(Received 29 November 1965)

Abstract—The synthesis of (\pm) sulphoraphene (I, $R = CH_2CH_3NCS$) has been achieved from γ -phthalimidobutyraldehyde dimethyl mercaptal (III) by conversion to 4,4-di-(methylsulphinyl)butyl isothiocyanate (V, $R = CH_3CH_3NCS$) and subsequent reaction stages IV and V. Stereospecific elimination of one methylsulphinyl group from V gave *trans*-4-methylsulphinyl-3-butenyl isothiocyanate (I; (\pm) sulphoraphene). IR and NMR spectra of (\pm) , and (-) sulphoraphene, as well as of their phenylthiourea derivatives are discussed.

THE naturally derived sulphoxide, (-) sulphoraphene, isolated from seeds of the *Raphanus sativus* L. var. *alba*, was assumed to be (-) 4-methylsulphinyl-3-butenyl isothiocyanate (I, $R = CH_2CH_2NCS$).³ This compound was the first natural product in which the optical activity is due to an asymmetric sulphur atom. Optically active mustard oils of this type occur abundantly in *Cruciferae*, and as the result of intensive studies by Kjaer *et al.*⁴ the discovery of sulphoraphene was followed in the last decade by new isothiocyanates with the skeleton II (n = 3, 4, 5, 6, 8, 9 and 10). Recently, the absolute configuration of sulphoxide mustard oils has been reported.^{5.6}

> CH₃SOCH=CH-R CH₃SO(CH₃)_nNCS I II

Although the synthesis of saturated sulphoraphane (II, n = 4) and analogous mustard oils (II) has been developed,^{7,8} no synthesis of α,β -unsaturated sulphoxides of the sulphoraphene type has been published. A report of the synthesis of (\pm) sulphoraphene (I) starting from γ -aminobutyric acid is now given.

The first approach to the synthesis of sulphoraphene, by pyrolysis of 1,1-di-(methylthio)-4-phthalimidobutane (III) to the thioenol (VI) according to Arens⁹ was unsatisfactory because of the high temperatures required. Instead, the stereospecific low temperature transformation of sulphoxide to olefin was applied.^{10,11}

III	RCH ₂ CH(SCH ₂) ₂	IV	RCH ₂ CH(SOCH ₂)SCH ₂
v	RCH ₃ CH(SOCH ₃) ₃	VI	RCH==CHSCH
	III-VI: $R = CH_2CH_3N(CO)_2C_8H_4$		

¹ Presented in part at the XIXth International Congress of Pure and Applied Chemistry, London July (1963).

- ⁸ H. Schmid and P. Karrer, Helv. Chim. Acta 31, 1017 (1948).
- ⁴ cf.e.g. A. Kjaer, Fortschr. Chem. Org. Naturstoffe 18, 122 (1960).
- ^b K. K. Cheung, A. Kjaer and G. A. Sim, Chem. Comm. 100 (1965).
- K. Mislow, M. M. Green, P. Laur and D. R. Chisholm, J. Amer. Chem. Soc. 87, 665 (1965).
- ⁷ H. Schmid and P. Karrer, Helv. Chim. Acta 31, 1497 (1948).
- ⁸ A. Kjaer, I. Larsen and R. Gmelin, Acta Chem. Scand. 9, 1311 (1955).
- * H. J. Boonstra, L. Brandsma, A. M. Wiegman and J. F. Arens, Rec. Trav. chim. 78, 252 (1959).
- ¹⁰ C. A. Kingsbury and D. J. Cram, J. Amer. Chem. Soc. 82, 1810 (1960).
- ¹¹ T. Colclough and J. I. Cunneen, Chem. & Ind. 626 (1960).

^a Taken in part from I. Monković, Ph.D. Dissertation, University of Zagreb (1962); present address: N.R.C. Post-Doctoral Fellow, McMaster University, Hamilton, Ont., Canada.

Accordingly, *cis*-elimination of 1-methyl-thio-1-methylsulphinyl or 1,1-di(methylsulphinyl)-derivatives, obtained by oxidation of dimethyl mercaptals with peroxy acids to the monosulphoxide or disulphoxide stage and pyrolysis of these sulphoxides afforded 1-methylthio-1-alkenyl derivatives (VI) and 1-methylsulphinyl-1-alkenyl derivatives (I) in good yields.

It is evident from Fig. 1 that cis-elimination¹⁰ of the sulphoxide group connected with the most favourable conformation of other groups (methylthio or methylsulphinyl) in the molecule affords predominantly *trans*-olefin:

Application of this reaction to mercaptals of several aliphatic, aromatic, and heterocyclic aldehydes resulted in a ratio of, *trans-cis* products ranging between the factors 4 and 10. For instance, phenylacetaldehyde gave 75% *trans*-methyl- ω -styryl sulphide and less than 10% of the *cis*-compound.¹² An earlier preparation of this compound by Truce *et al.*,¹³ by nucleophilic addition of methyl mercaptane to phenylacetylene predominantly afforded the *cis*-derivative. These configurational assignments are supported by spectral data: The NMR spectra of the higher melting sulphides, sulphoxides and sulphones¹² reveal the coupling constant values evident from the spin-spin splitting pattern of the two proton nuclei on the double bond in the range of 14 to 16 c/s. The standard interval attributed to protons on *trans* ethylenic double bonds is 11 to 18 c/s.¹⁴

IR spectra of these compounds have strong absorption bands between 980 and 965 cm⁻¹, assigned to the *trans* hydrogens in 1,2-disubstituted ethylenes.¹⁵ The IR spectrum of (--) sulphoraphene isolated in our laboratory from *Raphanus sativus* L. var. *radicula*¹⁶ also shows this absorption band. Groups of resonance lines in the NMR spectrum belonging to double bond protons show in this case a considerable fine structure because of very similar chemical shift values and spin-spin interactions with protons of a contiguous methylene group. Their structure may be an ABX₂ system¹⁷ with observed values J_{AB} = 15 c/s and $\delta_{AB} = 10$ c/s.

- ¹³ A. Deljac, Ph.D. Dissertation, University of Zagreb (1965); Ms in preparation.
- ¹⁸ W. E. Truce and J. A. Simms, J. Amer. Chem. Soc. 78, 2756 (1956).
- ¹⁴ L. M. Jackman, Applications of Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry. Pergamon, New York (1959).
- ¹⁸ cf. L. J. Bellamy, *The Infra-red Spectra of Complex Molecules* (2nd Edition) p. 45. Methuen, London (1959).
- ¹⁶ A. Deljac, I. Monković and K. Balenović, Bull. Sci. Acad. Youg. Section A, 211 (1965).
- ¹⁷ M. F. Barnes, W. D. Ollis, I. O. Sutherland, O. R. Gottlieb and M. Taveira Magalhães, *Tetra*hedron 21, 2707 (1965).

A convenient route for the preparation of (\pm) sulphoraphene in substantial quantities is as follows: 1-Methylsulphinyl-1-methylthio-4-phthalimidobutane (IV) was oxidized with peroxy acid to 1,1-di(methylsulphinyl)-4-phthalimidobutane (V). Subsequent hydrazinolysis of V afforded 4-amino-1,1-di(methylphinyl) butane (V, $R = CH_2CH_2NH_2$). From this compound 4,4-di-(methylsulphinyl)-butyl isothio-cyanate (V, $R = CH_2CH_2NCS$) was obtained in fairly good yields by a modification of the usual procedure¹⁸ for the conversion of the amino into the isothiocyanato group using trimethylamine as a base:

 $(CH_{3}SO)_{3}CHCH_{3}CH_{2}CH_{2}NH_{3} + CS_{3} + (CH_{3})_{3}N$ \downarrow $(CH_{3}SO)_{3}CHCH_{3}CH_{3}CH_{3}CH_{3}NHCSSH,N(CH_{3})_{3}$ $I_{3} \downarrow (CH_{3})_{3}N$ $(CH_{4}SO)_{3}CHCH_{3}CH_{3}CH_{3}NHI + S$

Pyrolysis of $V(R = CH_2CH_2NCS)$ at 130° in high vacuum (0.05 mm) afforded after purification *trans* (±) sulphoraphene in a 50% yield, showing satisfactory analytical results as well as IR and NMR spectra with characteristic maxima indistinguishable from those of natural (-) sulphoraphene.

For characterization the phenylthiourea derivative³ was prepared, which showed good analytical results and the same NMR spectrum as the corresponding derivative of the (-) sulphoraphene; IR spectra measured by the KBr method were slightly different whilst a CHCl₃ solution furnished completely coincedent spectra.

EXPERIMENTAL

M.ps are uncorrected. The NMR spectrograms were measured with a Varian A-60 instrument for CDCl₂ solutions containing tetramethylsilane as internal reference. All chemical shifts are quoted on the τ -scale.

The IR spectra were obtained from KBr discs and in CHCl₃ solution with Perkin-Elmer infracord 137. TLC was performed on Silica Gel G (E. Merck, Darmstadt, Germany) and spots developed with 1% KMnO₄aq solution.¹⁹ In preparative TLC, plates ($40 \times 30 \times 0.3$ cm) of Silica Gel HF₃₅₄ (E. Merck) were used. Light petroleum refers to the fraction bp. 40–60°.

1,1-Di(methylthio)-4-phthalimidobutane (III). γ -Phthalimidobutyraldehyde³⁰ (8·2 g, 0·029 mole) anhydrous ZnCl₁ (0·16 g), and methyl mercaptan (3·5 ml, 0·065 mole) were heated in a sealed glass tube at 90° for 3 hr. After cooling, the reaction mixture was diluted with benzene (20 ml) and washed

- ¹⁸ H. Schmid and P. Karrer, Helv. Chim. Acta 31, 1497 (1948); J. v. Braun, Ber. Disch. Chem. Ges. 35, 817 (1902), 45, 2188 (1912).
- ¹⁹ Organic sulphides and sulphoxides are detectable with this reagent as intensive yellow spots on pink background.

²⁰ K. Balenović, I. Jambrešić and I. Furić, J. Org. Chem. 17, 1459 (1952).

in turn with water (5 ml), 5% NaHCO₂aq (10 ml) and water (5 ml). After evaporating the benzene *in vacuo* an oil remained, which crystallized on standing. Recrystallization from MeOH afforded III (7.44 g, 87%). The analytical sample distilled at 125–130°/0.01 mm, m.p. 55–57°. (Found: C, 57.31; H, 5.70. C₁₄H₁₇O₃NS₃ requires: C, 56.92; H, 5.80%.)

1-Methylsulphinyl-1-methylthio-4-phthalimidobutane (IV). To a solution of III (5-91 g, 0-02 mole) in ether (80 ml) cooled to 0° an ethereal solution of perbenzoic acid^{\$11} (0-25 M, 80 ml, 0-02 mole) was added dropwise during 1 hr under stirring, the temp being kept at 0°. After 15 more min stirring at 0° the separated IV was filtered off and washed with ether (4 \times 10 ml), yield 5.5 g (88%) m.p. 96-113°.^{\$12} Crystallization from CH₂Cl₂-light petroleum afforded the analytical sample, m.p. 127-129°. (Found: C, 54-08; H, 5.54. C₁₄H₁₇O₃NS₂ requires: C, 53-99; H, 5.50%.)

1,1-Di(methylsulphinyl)-4-phthalimidobutane (V). To a solution of crude IV (m.p. 96-113°, 4.67 g, 0.015 mole) in CHCl₃ (50 ml) cooled to -15° , a solution of perbenzoic acid (0.4 M, 37.5 ml, 0.015 mole) in CHCl₃ was added dropwise during 2 hr under stirring, and a temp of -15° . The reaction mixture was evaporated *in vacuo* and the residual oil crystallized on addition of ether (20 ml). The crystals of V were filtered off and washed with ether (3 \times 10 ml); yield 4.6 g (93%), m.p. 127-136°. TLC showed a weak spot of starting material and two intensive spots belonging to diastereomers of V. The analytical sample was crystallized from CH₂Cl₂-ether, m.p. 137-141°. (Found: C, 51.16; H, 5.25. C₁₄H₁₇O₄NS₂ requires: C, 51.36; H, 5.23%.)

4-Amino-1,1-di(methylsulphinyl) butane (V, $R = CH_2CH_2NH_2$). A solution of V (m.p. 134–137°²¹, 6·2 g, 0·022 mole) in molar ethanolic hydrazine hydrate (44 ml) was refluxed for $\frac{1}{2}$ hr. After cooling, diluting with water (25 ml), and adjusting the pH 5·5 with dil HCl, the reaction mixture was kept at 50° for 10 min. After standing 5 hr at room temp, the precipitated phthaloyl hydrazide was filtered off, and the filtrate evaporated to dryness *in vacuo*. The residue was mixed with powdered anhydrous Na₂CO₃ (10 g), CHCl₈ added (50 ml), and after shaking it was filtered. The remaining crude mixture was washed with CHCl₃ (2 × 50 ml), the combined filtrates dried (Na₂CO₃), and evaporated to dryness at room temp. The residual viscous oil was dried *in vacuo* (P₂O₄) and consisted of V (R = CH₂CH₂NH₃) (3·55 g, 82%). The analytical sample was purified by precipitation from CH₂Cl₂-ether (Found: C, 36·59; H, 7·67. C₈H₁₅O₂NS₈ requires: C, 36·52; H, 7·66%.)

4.4-Di(methylsulphinyl)-butyl isothiocyanate (V, $\mathbf{R} = CH_{2}CH_{2}NCS$). A solution of V ($\mathbf{R} = CH_{2}CH_{2}NH_{2}$) (3.6 g, 18.2 mmole) in 4.5 molar methanolic Me₂N (20.5 ml, 91.9 mmoles) was cooled to -5° and a molar ethanolic solution of CS₂ (18.2 ml) was added. After standing at 0° for 5 hr the mixture was stirred 1 hr at room temp, and then a 0.5N methanolic I₂ (78 ml, 36.4 mmoles) added dropwise under continuous stirring during 1 hr at room temp. The reaction mixture was cooled to -5° , the precipitate filtered off, and after evaporating the filtrate *in vacuo* the residue was extracted with benzene (3 × 30 ml). The benzene extracts were evaporated to dryness at room temp, and the crude V ($\mathbf{R} = CH_{2}CH_{2}NCS$) as a pale yellow oil; (3 g, 68%) was purified by precipitation from CH₂Cl₂-ether. (Found: C, 35.62; H, 5.48. C₇H₁₂O₂NS₃ requires: C, 35.12; H, 5.47%.)

(\pm)Sulphoraphene (trans-4-methylsulphinyl-3-butenyl isothiocyanate I, R = CH₂CH₂NCS). 4,4-Di(methylsulphinyl)-butyl isothiocyanate (0.5 g, 2.09 mmoles) absorbed on glass wool was pyrolysed in a micro-distillation apparatus (bath temp 130-140°, 3 hr, 0.05 mm), yield 0.28 g (83%) of distillate. The distillate (1 g) was dissolved in ether (10 ml) and extracted with water (2 × 10 ml). After evaporating the water extracts *in vacuo* crude I remained (0.78 g, 60%) as a pale yellow oil. TLC in CHCl₃-EtOH (9:1) showed intensive spot R_y value 0.57 identical with natural (-)sulphoraphene and 3 weaker spots. Purification was carried out by preparative TLC in the same solvent system. Crude mixture (0.3 g) was applied on one TLC-plate (40 × 30 × 0.3 cm). After the chromatography, the zone with adsorbed (\pm)sulphoraphene was extracted with CHCl₃ and the solvent removed under red. press. From 1 g of crude mixture purified in this way 0.81 g (total yield 49%) of pure (\pm)sulphoraphene was obtained. Subsequent drying at 40°/0.04 mm yielded the analytical sample. (Found: C, 41.34; H, 5.28. C₆H₉ONS₉ requires: C, 41.12; H, 5.18%); ν_{max} (in KBr) 966, 1050, 1347, 2102, 2188 cm⁻¹. NMR spectrum (in CDCl₉) [τ 8:58-8.94 weak multiplet (corresp. 0.24H), τ 7.33 singlet (CH₃SO--), τ 7:60-7:00 multiplet (=CHCH₂CH₃N=), τ 6:50-6:09 multiplet (=CHCH₂CH₃N=) τ 3:83-3:08 multiplet (--CH=CH--CH₃--)]. Spectral data for natural (-)sulphoraphene: ν_{max} (in

¹¹ Organic Syntheses, Coll. Vol. 1, 431 (1941).

³³ TLC of this product showed also weak spots of disulphoxide(V).

³³ Crude product crystallized once from EtOH showed this m.p.

KBr) 967, 1049, 1348, 2109, 2188 cm⁻¹. NMR spectrum (in CDCl₂) [τ 8.73 weak (corresp. 0.31H), τ 7.32 singlet (CH₃SO—), τ 7.08–7.50 multiplet (=CHCH₃CH₂N=), τ 6.96 broad (corresp. 0.5H), τ 6.38–6.10 multiplet (--CH₃CH₃N=), τ 3.80–3.11 muliplet (--CH=CH--CH₃--)].

 (\pm) 1-(4-Methylsulphinyl-3-butenyl)-3-phenylthiourea. Pure (\pm) sulphoraphene (0.274 g) and aniline (0.175 g) in abs EtOH (0.65 ml) were refluxed for 15 min, cooled and ether added to the first cloudiness. After standing overnight at 0° colourless crystals of 1-(4-methylsulphinyl-3-butenyl)-3phenylthiourea deposited, yield 0.32 g (76%) m.p. 84-89°. Recrystallization from MeOH-ether gave an analytical sample m.p. 87-89°. The same derivative obtained from (-)sulphoraphene had m.p. 121° (Lit., * m.p. 121°). (Found: C, 53.98; H, 5.84. C12H16N2OS2 requires: C, 53.70; H, 6.01%); *v*max (in KBr) 723, 769, 955, 1005 1035, 1322, 1354, 1498, 1548, 3070, 3310 cm⁻¹; *v*max (in CHCl₂) 962, 1045, 1210, 1495, 1535, 3000, 3400 cm⁻¹. NMR spectrum (in CDCl₃) [τ 7·43 singlet (CH₃SO—), τ 7·68-7·20 multiplet (=CHCH₁CH₁NH--), τ 6.50-5.90 multiplet (-CH₁CH₂NH--), τ 3.40-3.75 multiplet $(-CH=CH--CH_s--)$, τ 3.30 broad $(-CH_sNHCS--)$, τ 3.00-2.36 multiplet $(-CS--NH--C_sH_s)$, τ 1.17 broad (-CSNH-C₆H₅)]. Spectral data for phenylthiourea derivative of natural (-)sulphoraphene: v_{max} (in KBr) 720, 765, 965, 978, 998, 1295, 1310, 1345, 1490, 1520, 3040, 3280 cm⁻¹; v_{max} (in CHCl₂) 961, 1045, 1208, 1492, 1530, 3000, 3400 cm⁻¹. NMR spectrum (in CDCl₂) [7 7.44 singlet $(CH_{3}SO_{-}), \tau$ 7·70–7·22 multiplet (=CHCH_{3}CH_{3}NH_-), \tau 6·66–5·95 multiplet (=CHCH_{3}CH_{3}NH_-), τ 3.43-3.75 multiplet (--CH=CHCH₂--), τ 3.27 broad (--CH₂CH₂NHCS--), τ 2.97-2.35 multiplet $(-CSNHC_6H_5)$, τ 1.18 broad $(-CSNHC_6H_5)$].

Acknowledgments—We wish to thank prof. A. Kjaer, Organic Chemical Laboratory, Royal Veterinary and Agricultural College, Copenhagen, for valuable comments, and to the Croatian Republic Research Fund for financial support.