THE REACTION OF QUINOL-6-YLMETHYLENEAMINES WITH DIALKYLPHOSPHITES. SYNTHESIS OF QUINOL-6-METHYLENEAMINES AND OF DIALKYL ESTERS OF ARYLAMINO(QUINOL-6-YL)METHYLPHOSPHONIC ACIDS

B. P. Lugovkin

Khimiya Geterotsiklicheskikh Soedinenii, Vol. 5, No. 4, pp. 694-697, 1969

UDC 547.831'546.185.325

Syntheses of quinol-6-ylmethyleneamines are described. The addition of dialkyl phosphites to the azomethine grouping of the quinol-6-ylmethyleneamines in the presence of sodium methoxide has been studied. Eighteen new dialkyl esters of arylamino(quinol-6-yl)methylphosphonic acids have been synthesized.

In the development of investigations in the field of 6-substituted quinolines [1, 2], we have studied the reaction of quinol-6-ylmethyleneamines with dialkyl phosphites.

For this purpose we have extended [1] the synthesis of quinol-6-ylmethyleneamines and the condensation of quinoline-6-aldehyde with aromatic and heterocyclic amines. Quinol-6-ylmethyleneaniline (I), quinol-6-ylmethylene-p-toluidine (II), quinol-6-ylmethylene-p-toluidine (III), quinol-6-ylmethylene-p-anisidine (IV), quinol-6-ylmethylene-p-anisidine (V), and quinol-6-ylmethylene-p-phenetidine (VI) have been obtained in good yield. The reaction of the aldehyde with monomethyl-substituted α -aminopyridines and α -aminoquinolines by heating the components in ethanolic solution has yielded 3-methyl-, 4-methyl-, and 5-methyl-2-(quinol-6-ylmethyleneamino)-pyridines (VII, VIII, IX) and 2-(quinol-6-ylmethyleneamino)quinoline (X).

The quinol-6-ylmethyleneamines synthesized consist of colorless crystalline substances (except for IV) soluble in organic solvents, sparingly soluble in diethyl ether, and insoluble in water. The azomethines I-VI were characterized in the form of the picrates and VII-X as the dipicrates (see Table 1).

The reaction of the quinol-6-ylmethyleneamines with dialkyl phosphites was carried out by the method described previously [3-5] in the presence of a sodium alkoxide. The condensation of I with dimethyl, diethyl, and diisopropyl phosphites gave the dimethyl, diethyl, and diisopropyl esters of phenylamino-(quinol-6-yl) methylphosphonic acids (XI-XIII), respectively.

$$CH = N - CH = N + HOP(OR)_2$$

$$CH_3ONa$$

$$PO(OR)_2$$

$$XI, XII, XIII, XIII$$

The products of the reaction of II and III and quinol-6-ylmethylene- β -naphthylamine [1] with dialkyl phosphites were the dialkyl esters of m-tolylamino-(quinol-6-yl)methylphosphonic acid (XIV, XV, XVI), of p-tolylamino(quinol-6-yl)-methylphosphonic acid (XVII, XVIII, XIX), and of β -naphthylamino(quinol-6-yl)-methylphosphonic acid (XX, XXI).

The condensation of the azomethines IV-VI gave esters of o-methoxyphenylamino-(quinol-6-yl)methyl-phosphonic acid (XXI, XXIII), of p-methoxyphenyl-amino(quinol-6-yl)methylphosphonic acid (XXIV, XXV, XXVI), and of p-ethoxyphenylamino(quinol-6-yl)-methylphosphonic acid (XXVII, XXVIII).

It was impossible to perform the addition of dialkyl phosphites to the azomethine groupings of di(quinol-6-ylmethylene)-p-phenylenediamine [1] or to the azomethines VII-X.

Table 1

Characteristics and Conditions of Synthesis of the Quinol-6-ylmethyleneamines

	Amounts actants, g					N,	%		Picrates			
Com-			Amount of etha-	Mp, C	Empirical formula		_	yield,	!		N,	%
pound	quino- line-6- aldehyde	amine	nol, ml		TOPINUIA	found	calcu- lated	70	mp, *C	empirical formula	found	calcu- lated
I	1.5	0.89	_	98—99	$C_{16}H_{12}N_2$	12.16	12.07	90.6	214—215	$C_{16}H_{12}N_2 \cdot C_6H_3O_7N_3$	14.85	15.18
Щ	2.0	1.36		80—81	C ₁₇ H ₁₄ N ₂	11.02	11.38	93.6	226—227	$C_{17}H_{14}N_2 \cdot C_6H_3O_7N_3$	14.93	14.74
Ш	1.5	1.02		98—99	C ₁₇ H ₁₄ N ₂	11.72	11.38	92.0	233—235	$C_{17}H_{14}N_2 \cdot C_6H_3O_7N_3$	15.14	14.74
IV	2.0	1.56	5	Viscous líquid	C ₁₇ H ₁₄ ON ₂	10.97	10.68	89.0	195—196	C ₁₇ H ₁₄ ON ₂ · C ₆ H ₃ O ₇ N ₃	14.56	14.26
V	3.0	2.35	10	112—113	$C_{17}H_{14}ON_2$	11.00	10.68	80.0	224—225	$C_{17}H_{14}ON_2 \cdot C_6H_3O_7N_3$	14.67	14.26
VI	3.8	3.30	10	106—107	C18H16ON2	9.78	10.14	97.4	210—211	$C_{18}H_{16}ON_2 \cdot C_6H_3O_7N_3$	13.70	13.86
VII	2.0	1.37	5	8990	C ₁₆ H ₁₃ N ₃	17.26	17.00	89.0	236237	C ₁₆ H ₁₃ N ₃ · 2C ₆ H ₃ O ₇ N ₃	17.57	17.87
IIIV	2.5	1.72	5	120—121	C ₁₆ H ₁₃ N ₃	17.31	17.00	77.0	234—235	C ₁₆ H ₁₃ N ₃ · 2C ₆ H ₃ O ₇ N ₃	17.64	17.87
IX	2.2	1,51	5	97—98	C ₁₆ H ₁₃ N ₃	16.83	17.00	81.2	260-261	C ₁₆ H ₁₃ N ₃ · 2C ₆ H ₃ O ₇ N ₃	18.02	17.87
х	2.1	1.92	5	168169	C ₁₉ H ₁₃ N ₃	14.52	14.84	85.5	267—268	C ₁₉ H ₁₃ N ₃ · 2C ₆ H ₃ O ₇ N ₃	17.36	17.00

Table 2

Charac	Characteristics and Conditions for the Synthesis of Dialkyl Esters of Arylamino(quinol-6-yl)methylphosphonic Acids	ditions	s for tł	ie Synth	esis of Dig	Dialkyl F Acids	sters c	of A	rylami	-louinb)ou	6-yl)met	hylpho	sphc	nic
			Amounts				Calcu-				Picrates			
.Сош-			of reac- tants, g			Found,					~~~	found, %	calcu- lated, ?	.%
pound No.	Compound	~	azomethine dialkyl-	Mp, .C	Empirical formula	Z	Z	% ,bləiY	mp, °C	empirical formula	formula	Z .	z	ů.
IX IIX IIIX	Potors,	CH ₃ C ₂ H ₅ C ₃ H _{7-i}	0.50 0.30 0.50 0.37 0.50 0.45	157—158 122—123 154—155	$\begin{array}{c c} 157 - 158 & C_{18}H_{19}O_3N_2P \\ 122 - 123 & C_{20}H_{23}O_3N_2P \\ 154 - 155 & C_{22}H_{27}O_3N_2P \end{array}$	8.33 8.75 7.72 8.65 7.33 8.11	8.33 8.79 8.18 9.06 87.8 7.72 8.62 7.56 8.37 62.5 7.33 8.11 7.03 7.78 46.5	87.8 62.5 1	170—171 162—163 165—166	170—171 C ₁₈ H ₁₉ O ₈ N ₂ P • C ₆ H ₃ N ₃ O ₇ 12.03 5.17 12.26 5.43 162—163 C ₂₀ H ₂₈ O ₃ N ₂ P • C ₆ H ₃ N ₃ O ₇ 11.42 5.52 11.67 5.17 165—166 C ₂₂ H ₂₇ O ₃ N ₂ P · C ₆ H ₃ N ₃ O ₇ 11.33 4.80 11.16 4.94	C ₆ H ₃ N ₃ O ₇ C ₆ H ₃ N ₃ O ₇ C ₆ H ₃ N ₃ O ₇	12.03 5.17 11.42 5.52 11.33 4.80	12.26 11.67 11.16	5.43 5.17 4.94
VIX VX XVI	N POLORE,	CH ₃ C ₂ H ₅ C ₃ H ₇₋₁	0.50 0.28 1 0.60 0.40 1 0.60 0.50 1	117—118 117—118 125—126	C ₁₉ H ₂₁ O ₃ N ₂ P 7.52 8.97 7.86 8.71 69.4 120—121 c ₂₁ H ₂₆ O ₃ N ₂ P 7.41 8.427.29 8.07 53.7 113—114 c ₂₈ H ₂₈ O ₃ N ₂ P 6.51 7.36 6.79 7.52 30.0 116—117	7.52 8.9° 7.41 8.4° 6.51 7.36	77.86 8.71 27.29 8.07 56.79 7.52	69.4 53.7 30.0	120—121 113—114 116—117	C ₁₉ H ₂₁ O ₃ N ₂ P · C ₆ H ₃ N ₃ O ₇ 11.58 5.37 11.96 5.30 C ₂₁ H ₂₈ O ₃ N ₂ P · C ₆ H ₃ N ₃ O ₇ 11.18 5.28 11.42 5.05 C ₂₅ H ₂₈ O ₃ N ₂ P · C ₆ H ₃ N ₃ O ₇ 10.54 5.20 10.92 4.83	C ₆ H ₃ N ₃ O ₇ C ₆ H ₃ N ₃ O ₇ C ₆ H ₃ N ₃ O ₇	11.58 5.37 11.18 5.28 10.54 5.20	11.96 311.42 10.92	5.30 5.05 4.83
XVII XIX	N POOR 12	$\left \begin{array}{c} CH_3 \\ C_2H_5 \\ C_3H_{7}.i \end{array} \right $	0.50 0.28 0.60 0.41 0.60 0.50	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C ₁₉ H ₂₁ O ₃ N ₂ P C ₂₁ H ₂₅ O ₃ N ₂ P C ₂₃ H ₂₉ O ₃ N ₂ P	7.60 8.0; 7.02 8.4; 7.04 7.3;	7.60 8.02 7.86 8.71 87.5 7.02 8.42 7.29 8.07 75.2 7.04 7.33 6.79 7.52 68.0	87.5 75.2 68.0	172—173 174—175 175—176	172—173 C ₁₉ H ₂₁ O ₃ N ₂ P · C ₆ H ₃ N ₃ O ₇ 11.65 S ₆ O ₆ 11.96 S _{5.30} 174—175 C ₂ H ₂₈ O ₃ N ₂ P · C ₆ H ₃ N ₃ O ₇ 4.20 4.81 11.42 S _{5.50} 175—176 C ₂ H ₂₈ O ₃ N ₂ P · C ₆ H ₃ N ₃ O ₇ 10.62 S _{5.28} 10.92 4.83	C6H3N3O, C6H3N3O, C6H3N3O,	11.65 5.60 14.20 4.81 10.62 5.28	11.96 11.42 10.92	5.30 5.05 4.83
XXX	N	CH ₃ C ₃ H ₇ - <i>i</i>		1.00 0.50 157—158 1.10 0.80 158—159	C ₂₆ H ₂₁ O ₈ N ₂ P 7.46 8.27 7.14 7.91 36.0 C ₂₆ H ₂₉ O ₃ N ₂ P 6.98 6.70 6.24 6.91 11.5	7.46 8.2° 6.98 6.70	7 7.14 7.91 0 6.24 6.91		134—135 130—132	$ \begin{array}{l} C_{22}H_{21}O_3N_2P \cdot C_6H_3N_3O_7 11.53 5.04 11.26 4.99 \\ C_{26}H_{29}O_3N_2P \cdot C_6H_3N_3O_7 10.63 4.81 10.34 4.58 \end{array} $	· C ₆ H ₃ N ₃ O ₇	11.53 5.04	11.26	4.99
XXIII	OCH,	CH3 C3H7- <i>i</i>	1.42 0.75 1.45 1.14	150—151	C ₁₉ H ₂₁ O ₄ N ₂ P C ₂₃ H ₂₉ O ₄ N ₂ P	7.38 8.65 6.83 7.51	7.38 8.63 7.52 8.33 50.0 6.83 7.51 6.54 7.24 38.1	38.1	161—162	$C_{19}H_{21}O_4N_3P\cdot C_6H_3N_3O_7 \ 11.83^{2}.5.8 \ 11.645.15 \\ C_{22}H_{23}O_4N_2P\cdot C_6H_3N_3O_7 \ 10.81^{5}.23 \ 10.65^{4}.71$	C ₆ H ₃ N ₃ O ₇	11.83 5.58	3 10.6	5.15
XXXV XXXVI	N	CH3 C2H5 C3H7-i	1.30 0.68 1.00 0.65 1.00 0.80	176—177 156—157 165—166	C ₁₉ H ₂₁ O ₄ N ₂ P C ₂₁ H ₂₅ O ₄ N ₂ P C ₂₈ H ₂₉ O ₄ N ₂ P	7.85 8.14 6.68 7.98 6.71 7.56	4 7.52 8.33 8 7.00 7.75 6.54 7.24	76.1 78.9 64.4	114-115 108-109 114-115	$ \begin{array}{c} C_{10}H_{20}O_4N_2P / 885 / 814 / 7.52 / 8.33 / 76.1 / 114-115 / C_{10}H_{21}O_4N_2P \cdot C_6H_{3}N_2O_7 / 11.35 / 5.01 / 11.645.15 / C_{21}H_{32}O_4N_2P / 6.64 N_3P / 6.68 / 7.98 / 7.007 / 775 / 78.9 / 108-109 / C_{21}H_{32}O_4N_2P \cdot C_6H_{3}N_2O_7 / 11.36 / 5.25 / 11.134.92 / C_{22}H_{32}O_4N_2P / 6.71 / 7.56 / 6.54 / 7.24 / 114-115 / C_{28}H_{39}O_4N_2P \cdot C_6H_3N_3O_7 / 10.38 / 4.94 / 10.65 / 4.71 / 10.38 / 4.94 / 10.65 / 4.71 / 10.38 / 4.94 / 10.65 / 4.71 / 10.38 / 4.94 / 10.65 / 4.71 / 10.38 / 4.94 / 10.85 / 4.71 / 10.38 / 4.94 / 10.85 / 4.71 / 10.38 / 4.94 / 10.85 / 4.71 / 10.38 / 4.94 / 10.85 / 4.71 / 10.38 / 4.94 / 10.85 / 4.71 / 10.38 / 4.94 / 10.85 / 4.71 / 10.38 / 4.94 / 10.85 / 4.71 / $. C ₆ H ₃ N ₃ O ₇ . C ₆ H ₃ N ₃ O ₇ . C ₆ H ₃ N ₃ O ₇	11.35 5.0 11.36 5.2 10.38 4.9	1 11.6 5 11.13 4 10.68	15.15 14.92 4.71
XXVIII	N POLORI,	CH3 C2H5	1.40 0.70 1.30 0.82	141—142 145—146	C ₂₀ H ₂₃ O ₄ N ₂ P C ₂₂ H ₂₇ O ₄ N ₂ P	7.46 7.68	8 7.25 8.03 5 6.76 7.48	92.2	164—165 128—129	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	CeH3N3O7 CeH3N3O7	11.10 5.2	1 11.3% 8 10.8%	3 4.82

The dialkyl esters of arylamino(quinol-6-yl)methyl-phosphonic acids that were synthesized consisted of crystalling substances soluble in organic solvents, sparingly soluble in ether, and insoluble in water.

The picrates of the esters were obtained (see table 2).

EXPERIMENTAL

Synthesis of the quinol-6-ylmethyleneamines (I-X). A mixture of quinoline-6-aldehyde (mp $75-76^{\circ}$ C) and an amine (in equimolecular amount) in solution in ethanol or in the absence of a solvent was heated in the water bath for 1 hr. After the reaction product had been cooled or the ethanol had been evaporated off, rapid crystallization took place. The majority of the azomethines were recrystallized from benzene (5-8 ml), II and VI from a mixture of benzene and petroleum ether, and V and X from ethanol.

Quinol-6-ylmethyleneaniline has been synthesized previously [6] by heating the aldehyde and aniline hydrochloride. Crystals with mp 99°C. The yield was not given and the picrate was not prepared.

The picrates of the azomethines I-VI and the dipicrates of VII-X were obtained by heating the components in glacial acetic acid (Table 1).

Synthesis of the dialkyl esters of arylamino(quinol-6-yl)methyl-phosphonic acids (XI-XXVIII). To a mixture of a quinol-6-ylmethyleneamine and a dialkyl phosphite ($\sim 25\%$ excess) was added 0.2-0.3 ml of a saturated anhydrous methanolic solution of sodium methoxide. When the mixture was stirred vigorously, the reaction took place with

the evolution of heat and it was completed by heating at 80-85°C for 1-2 min. The reaction products were obtained in the form of crystal-line masses or viscous liquids crystallizing on standing (in the cold). Dry ethyl ether was added, the mixture was stirred, and the crystals were filtered off. The majority of the esters were crystallized from xylene (3-5 ml), while the esters XXII-XXVI were crystallized from ethanol (2-3 ml).

The picrates of the esters XI-XXI were prepared in and crystallized from glacial acetic acid; the picrates of XXII and XXVIII were obtained in xylene solution and crystallized from ethanol (Table 2).

REFERENCES

- 1. B. P. Lugovkin, ZhOKh, 23, 1696, 1953.
- 2. B. P. Lugovkin, KhGS [Chemistry of Heterocyclic Compounds], 1, 382, 1965.
 - 3. A. N. Pudovik, DAN, 83, 865, 1952.
 - 4. A. N. Pudovik, DAN, 92, 773, 1953.
- 5. A. N. Pudovik and M. A. Pudovik, ZhOKh, 36, 1467, 1966.
 - 6. I. Howitz and I. Philipp, Ann., 396, 31, 1913.

10 January 1967

All-Union Scientific-Research Institute for the Protection of Labor, Kazan