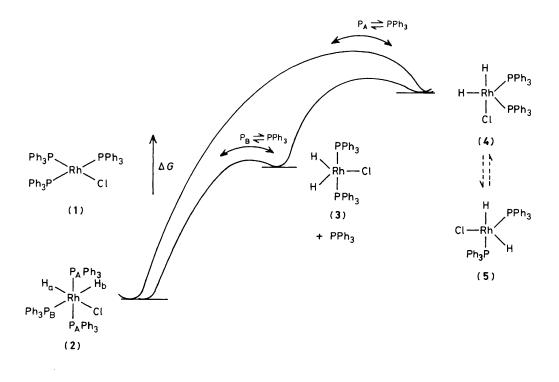
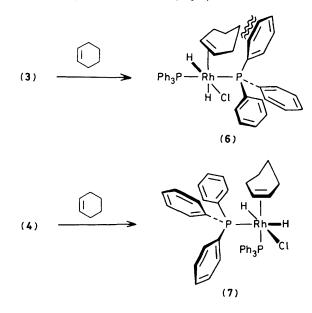
On the Accessibility of *cis*-Bisphosphine Intermediates in Homogeneous Hydrogenation catalysed by Wilkinson's Complex, $CIRh(PPh_3)_3$

John M. Brown and Andrew R. Lucy

Dyson Perrins Laboratory, South Parks Rd., Oxford OX1 3QY, U.K.


New information on the stereochemistry of intermediates in the catalytic cycle of hydrogenation by CIRh(PPh₃)₃ is revealed by magnetisation transfer experiments in ¹H and ³¹P n.m.r. spectroscopy.


In mechanistic studies¹ of homogeneous hydrogenation catalysed by $ClRh(PPh_3)_3$ (1) emphasis has been placed on reaction kinetics and the structure of observable intermediates. Less information is available concerning the stereochemistry of transient species but it has generally been assumed¹ that two PPh₃ ligands are maintained in a mutually *trans*-configuration throughout the catalytic cycle, and the third is not involved other than in side-equilibria. We report experiments employing the DANTE pulse sequence^{2,3} for spin-polarisation transfer in ³¹P n.m.r. which reveal the possibility of a *cis*-(PPh₃)₂Rh arrangement at key stages in the catalytic cycle.

When the dihydride complex (2) $(0.036 \text{ M}, 40: 60 \text{ CD}_2\text{Cl}_2\text{-}$ $[{}^{2}H_{8}]$ toluene, 273 K) is examined by ${}^{1}H$ n.m.r. spectroscopy, two sharp hydride signals [δ -16.5 (H_a) and -9.3 (H_b)] are observed. Inversion of H_a through the R.F. decoupler demonstrated an exchange process with $k_{ab} = 6.8 \text{ s}^{-1}$. The ³¹P n.m.r. spectrum of the same sample at 273 K exhibited a double triplet at 21.1 p.p.m. (P_B) and a double doublet at 40.4 p.p.m. (P_A). Inversion of the lower-field component of the double triplet and monitoring the intensity of the higher-field component as a function of the delay between the inversion pulse train and the observation pulse demonstrates an exchange between the two sites with $k_{+-} = 7.1 \text{ s}^{-1}$. This reflects that rate at which P_B-Rh coupling is lost. These observations accord with a mechanism where P_B dissociates (a process known¹ to be rapid at room temperature) and H_a , H_b are equivalent in the 5-co-ordinate intermediate (3) leading to rate-constants for the two exchange processes which are identical within experimental error. In a control experiment conducted at 243 K it was shown that no magnetisation was transferred to P_A on excitation of P_B and thus complications due to scalar coupling⁴ are minimal.

In the presence of a twelve-fold excess of PPh₃ [0.38 M vs. 0.032 M (2) in 40:60 CH₂Cl₂-toluene, 303 K] the ³¹P n.m.r. spectrum of (2) reduces to a broadened doublet at 38.1 p.p.m. (P_A) and a singlet at -5.7 p.p.m. (P_B \rightleftharpoons PPh₃, $w_{\frac{1}{2}} = 13 \text{ Hz}$). Inversion of the latter resonance leads to transfer of magnetisation to P_A with $k_{\text{dis.}} = 0.31 \text{ s}^{-1}$. The exchange process demands PPh₃ return to a five-co-ordinate intermediate of alternative stereochemistry [(4), or less likely (5)]. Under the conditions of the experiment, interconversion of the five-coordinate dihydridobisphosphinerhodium complexes ought to be fast⁵ relative to PPh₃ trapping.

Insofar as the catalytic cycle of hydrogenation is concerned, interception of intermediate (3) by an alkene (say cyclohexene) leads to complex (6) and the stereoisomer (7)arises by interception of the alternative, (4). The relative concentrations of these two alkene complexes will reflect their thermodynamic stabilities and not the kinetics of alkene association since the latter step is reversible. Indeed, the reaction of trans- $(C_2H_4)(PPh_3)_2RhCl$ with H_2 and PPh_3 leads to rapid alkene displacement rather than hydrogenation.⁶ There are several reasons why complex (7) is more likely to be the true catalytic intermediate. In the addition of a metalhydrido ligand to an alkene, the best overlap ensues when the M-H and C-C bonds are coplanar in a 4-centre transitionstate. The premise is supported by recent experimental studies on reversible insertion reactions⁷ and by *ab initio* calculations on alkene hydroboration.8

Molecular models indicate that the reactive conformation of complex (6) is sterically compressed relative to that of complex (7) and the difference is accentuated in an alkyl-like transition state. Furthermore, only the latter complex has a rhodium-hydrido ligand labilised towards alkene addition by a *trans*-phosphine. If *cis*-phosphine geometry is enforced by chelation, hydrogen transfer to co-ordinated alkene is very rapid.⁹ In a thorough study¹⁰ of the mechanism of alkene insertion in *cis*-*trans* fluxional $(C_2H_4)(PPr_i_3)_2RhH$, a *cis*-bisphosphine arrangement was inferred to be the reactive one. When rigidly *trans*-complexing ligands are employed¹¹ in homogeneous hydrogenation the reactivity is low.

The application of DANTE techniques to $ClRh(PPh_3)_3^+(1)$ (0.02 M, CH_2Cl_2 ; 0.25 M in PPh_3, 303 K) permitted direct observation of the dissociative phosphine exchange^{1,12} with $k_{dis.} = 0.54 \text{ s}^{-1}$. In separate experiments it was shown that

† It proved necessary to prepare complex (1) from (cyclo- $C_8H_{14}RhCl)_2$ to avoid relaxation by trace paramagnetic impurities formed in conventional syntheses. The method of synthesis did not affect catalytic activity in the hydrogenation of 3,3-dimethylbut-1-ene.

cis-trans isomerisation¹³ in complex (1) which interchanges the two phosphine environments *via* a tetrahedral intermediate¹³ is much faster, with $k_{\text{isom.}} = 22 \text{ s}^{-1}$. Thus the exchange experiment does not provide information on the preferred stereochemistry of the 14-electron intermediate¹⁴ ClRh(PPh₃)₂.

We thank S.E.R.C. for support and Johnson-Matthey for a generous loan of rhodium salts.

Received, 19th March 1984; Com. 361

References

- J. Halpern, *Inorg. Chim. Acta*, 1981, **50**, 10; C. A. Tolman and J. W. Faller, in 'Homogeneous Catalysis with Metal–Phosphine Complexes,' ed. L. H. Pignolet, Plenum Press, New York, 1983, ch. 2, p. 13 ff; B. R. James, in 'Comprehensive Organometallic Chemistry,' ed. G. Wilkinson, Pergamon Press, Oxford, 1982, vol. 8, p. 285 ff.
- 2 G. A. Morris and R. Freeman, J. Magn. Reson., 1978, 29, 433.
- 3 J. M. Brown, L. R. Canning, A. G. Kent, and P. J. Sidebottom, J. Chem. Soc., Chem. Commun., 1982, 721; J. M. Brown, P. A. Chaloner, and G. A. Morris, *ibid.*, 1983, 646.
- 4 C.f. the discussion on J cross-peaks in the 2D exchange spectroscopy of strongly coupled systems: S. Macura, Y. Huang, D. Suter, and R. R. Ernst, J. Magn. Reson., 1981, 43, 259.
- 5 Stereomutation rate-constants in the range 10⁶—10⁸ s⁻¹ might be anticipated for a 5-co-ordinate dihydridobisphosphinerhodium; *e.g.* J. M. Brown and A. G. Kent, J. Chem. Soc., Chem. Commun., 1982, 723; P. Meakin, E. L. Muetterties, and J. P. Jesson, J. Am. Chem. Soc., 1972, 94, 5271.
- 6 Y. Ohtani, M. Fujimoto, and A. Yamagishi, Bull. Chem. Soc. Jpn., 1977, **50**, 1453.
- 7 T. W. Dekleva and B. R. James, J. Chem. Soc., Chem. Commun., 1983, 1350.
- 8 S. Nagase, N. K. Ray, and K. Morokuma, J. Am. Chem. Soc., 1980, 102, 4536.
- 9 C. R. Landis and J. Halpern, J. Organomet. Chem., 1983, 250, 485, and references therein.
- 10 D. C. Roe, J. Am. Chem. Soc., 1983, 105, 7770.
- 11 J. M. Brown, L. R. Canning, and A. R. Lucy, following communication.
- 12 J. M. Brown, L. R. Canning, A. J. Downs, and A. M. Forster, J. Organomet. Chem., 1983, 255, 103.
- 13 D. R. Eaton and S. R. Suart, J. Am. Chem. Soc., 1968, 90, 4170.
- 14 For calculation on the energies of $(H_3P)_2RhCl$ isomers see A. Dedieu, *Inorg. Chem.*, 1980, **19**, 375.