# Uber Konformation und Konfiguration einiger Dichalkogenastannolane

Von B. MATHIASCH

Mainz, Institut für Anorganische Chemie und Analytische Chemie der Universität

Inhaltsübersicht. Die Protonenspektren von 4-substituierten 1,3-Dioxa-(1,3-Dithia-)2stannacyclopentanen und von 1,3-Oxathia-2-stannacyclopentanen werden analysiert und die Parameter durch Simulationsrechnung gewonnen. Die Kopplungskonstanten werden in Beziehung zur Konformation der Heterocyclen zur und Konfiguration am Zinnatom gebracht.

#### **Conformation and Configuration of Some Dichalcogenastannolanes**

Abstract. The <sup>1</sup>H-n.m.r. patterns of 4-substituted 1.3-dioxa-(1.3-dithia-)-2-stannacyclopentanes and of 1.3-oxathia-2-stannacyclopentanes are analysed. The spectral parameters are elucidated by simulation accompanied by least squares fitting procedures. The coupling constants are related to the conformation of the heterocycles and to the configuration at tin.

### Einleitung

Dithiastannolane erweisen sich durch Messungen der kolligativen Eigenschaften als monomer [1]. Massenspektrometrische Untersuchungen bestätigen dieses Verhalten auch für den gasförmigen Zustand [2]. Im Gegensatz dazu neigen Oxathia- und Dioxastannolane ausgeprägt zur Oligomerisierung selbst im Dampfzustand [2]. Die dazu nötige intermolekulare Wechselwirkung wird unterschiedlich formuliert:

1. Ringerweiterung unter Beibehaltung der tetraedrischen Konfiguration am Zinnatom [3, 4, 5].

2. Intermolekulare Assoziation über Sn-O-Bindungen unter Erhöhung der Koordinationszahl des Zinnatoms.

Folgende experimentelle Beobachtungen sprechen für die zweite Annahme, also Erhöhung der Koordinationszahl.

a) der im Vergleich zur Dithiaverbindung höhere Schmelzpunkt,

Beispiele: n-Bu<sub>2</sub>SnSCH<sub>2</sub>CH<sub>2</sub>S 59/60°C [6] n-Bu<sub>2</sub>SnSCH<sub>2</sub>CH<sub>2</sub>O 89/90°C [7] n-Bu<sub>2</sub>SnOCH<sub>2</sub>CH<sub>2</sub>O 225/8°C [8]

b) die im Vergleich schlechtere Löslichkeit in unpolaren organischen Lösungsmitteln [9],

c) die Hochfeldverschiebung der <sup>119</sup>Sn-Kernresonanz gegenüber Tetramethylzinn [8, 10]. d) die Kopplungskonstanten  ${}^{2}J_{\text{SnCH}}$  und  ${}^{3}J_{\text{SnXCH}}$  mit X = 0, S [2],

e) die Quadrupolaufspaltung in Mößbauerspektren liegen bei den Dioxaverbindungen im Bereich für die trigonale-bipyramidale Konfiguration am Zinnatom [2, 8, 11],

f) Messungen des Dipolmoments [12] und

g) Röntgenstrukturdaten [13].

Aus der großen Zahl unabhängiger Beobachtungen läßt sich mit hoher Wahrscheinlichkeit die Vergrößerung der Koordinationszahl über Sn-O-Koordination ableiten.

Im weiteren soll gezeigt werden, welchen Einfluß die Vergrößerung der Koordinationszahl am Zinnatom auf die <sup>1</sup>H-Kernresonanzparameter und auf die Konformation des Heterocyclus hat.

### Experimentelles

Darstellung der Verbindungen 1 bis 5

1 4-Methyl-2,2-Dialkyl-1,3,2-Dithiastannolan, 1a Alkyl = Methyl, 1b Alkyl = n-Butyl. Ausgehend vom Dinatriumsalz des Propan-2,3-Dithiols und entsprechendem Dialkyldichlorstannan. Propan-2,3-Dithiol erhältlich durch Reduktion des Propan-2,3-Trithiocarbonats mit LiAlH<sub>4</sub> nach [14]. Reinigung durch Umkristallisieren aus Petroläther 50/70°C, Fp. der Verb.: 1a 39/40 und 1b 2/3°C.

2 4-Phenyl-2,2-Dialkyl-1,3,2-Dithiastannolan, 2a Alkyl = Methyl, 2b Alkyl = n-Butyl. Ausgehend von 2-Phenyläthan-1,2-Dithiol und entsprechendem Dialkylzinnoxid, Wasserauskreisung nach [5]. Reinigung der Produkte durch Säulenchromatographie (Al<sub>2</sub>O<sub>3</sub> neutral, Aktiv. I, Benzol). Fp. der Verb.: 2a 97/8 und 2b <  $-20^{\circ}$ C (visk. gelb. Flüss.).

3 2,2-Dialkyl-1,3,2-Oxathiastannolan, 3a Alkyl = Methyl, 3b Alkyl =  $\ddot{A}$ thyl, und 3c Alkyl = n-Butyl. Ausgehend von Mercaptoäthanol und entsprechendem Dialkylzinnoxid in Toluol unter Wasserabscheidung.

Reinigung durch Umkristallisieren aus Petroläther 50/70°C, Fp. der Verb.: **3a** 247/8 u. Z., **3b** 202/4 u. Z. und **3e** 93/5°C.

4 4-Methyl-2,2-Dialkyl-1,3,2-Dioxastannolan, 4a Alkyl = Methyl, 4b Alkyl = n-Butyl. Ausgehend von 2,3-Propandiol und entsprechendem Dialkylzinnoxid, 4a Wasserabscheidung ohne Lösungsmittel, 4b in Toluol. Fp. der Verb.: 4a ab 250°C Zers. und 4b 182/5°C.

5 4-Phenyl-2,2-Di-n-Butyl-1,3,2-Dioxastannolan. Ausgehend von Styrolenalkohol [15] und Di-n-Butylzinnoxid in Toluol, Reinigung durch Umkristallisieren aus Toluol, Fp. 186/8°C u. Z.

Aufnahme der Spektren und Auswertung

Gerät HX-60, 60 MHz (Bruker-Physik, Karlsruhe), etwa halbgesättigte Lösungen in CDCl<sub>3</sub>, wenn nicht anders erwähnt, interne Stabilisierung auf Tetramethylsilan. Lösungen durch Einleiten von Stickstoff in der Hitze unter langsamem Abkühlen von gelöstem Sauerstoff befreit. Alle Messungen bei Raumtemperatur.

Spektrensimulation und Verfeinerung durch Programme LAME für magnetische Äquivalenz und LACX für chemische Äquivalenz, beide von HAIGH [16].

### **Ergebnisse und Diskussion**

# Die Kopplungskonstante <sup>2</sup>J<sub>119SnCH</sub>

In Verbindungen des Typs  $(CH_3)_{4-n}Sn(SCH_3)_n$  bewegt sich die absolute Größe der Kopplungskonstanten  ${}^2J_{SnCH}$  von 55 bis 66,6 Hz bei Variation des n von 0 bis 3. Die Molekeln dieser Verbindungen enthalten bekanntlich ein tetraedrisches

Zinnatom [17]. 2, 2-Dimethyl-1, 3, 2-Dithiastannolan weist die entsprechende Kopplung von 59,5 Hz auf [18]. Für die Gruppierung  $(CH_3)_2SnS_2$  mit tetraedrischen Zinn wird also eine Größe der Kopplungskonstanten  ${}^2J_{SnCH}$  von etwa 60 Hz erwartet. Tab. 1 bestätigt dies auch für 4-substituierte 1,3,2-Dithiastannolane.

 (Oxathia)-stannolanen

 Lösungsmittel
 1 a
 2 a
 3 a

 CDCl<sub>3</sub>
 61,5
 61,5
 73

 Pyridin
 68
 68
 73

Tabelle 1 Kopplungskonstante <sup>2</sup>J119<sub>SnCH</sub> in 1, 3, 2-Dithia-

Beim Ersatz eines Schwefelatoms durch das elektronegativere Sauerstoffatom tritt erwartungsgemäß eine Erhöhung der diskutierten Kopplung ein [19, 20]. Gleichzeitig wird aber eine Neuhybridisierung des Zinnatoms in Betracht gezogen [21].

Die Größe der indirekten Spin-Spinkopplungskonstanten  ${}^{2}J_{119}_{SnCH}$  wird im wesentlichen von zwei Faktoren kontrolliert:

- 1. der effektiven Kernladung des Zinnatoms,
- 2. dem Anteil s-Charakter in der Sn-C-Bindung.

Die effektive Kernladung ändert sich in der Serie  $(CH_3)_{4-n}$  SnCl<sub>n</sub> mit n = 0, 1, 2, 3 nur um etwa 2%, während die Kopplungskonstante fast um 100% zunimmt [22]. Also sollte dieser drastische Effekt mit der anteiligen Verstärkung des s-Charakters in der Sn – C-Bindung begründet werden. Ein größerer Anteil s als 25% im tetraedrischen sp<sup>3</sup>-Hybrid ist nicht möglich. Beim Übergang zu den Konfigurationen sp<sup>2</sup>pd (Koordinationszahl 5) und spp<sup>2</sup>d<sup>2</sup> (Koordinationszahl 6) sind Anteile des s-Elektrons in der Bindung Zinn-Kohlenstoff von 33% bzw. 50% denkbar.

Dies wäre eine plausible Erklärung für die gewaltige Änderung der Kopplungskonstanten, wenn nicht sämtliche Werte für die chemische Verschiebung des <sup>119</sup>Sn-Kerns in der erwähnten Reihe alle bei kleineren magnetischen Flußdichten lägen als die Referenz Tetramethylstannan und damit Vierkoordination anzeigten [23]. Es scheint also Vorsicht geboten bei der Interpretation der Kopplungskonstanten  ${}^{2}J_{\text{SnCH}}$ . Sicherer ist der Vergleich der Werte aus Messungen in inerten Lösungsmitteln und solchen mit Donoreigenschaften, die eine größere Koordinationszahl als 4 erzwingen können, vgl. [23]. Tab. 1 zeigt die Ergebnisse solcher Vergleichsmessungen für die Verbindungen, die sich ausreichend sowohl in Chloroform als auch in Pyridin lösen.

Während die Dithiaverbindungen mit einer 10prozentigen Erhöhung der Kopplung in Pyridin mindestens Fünfkoordination signalisieren, bleibt dieser Effekt bei der Oxythiaverbindung aus, somit kann man hier selbst im inerten Lösungsmittel schon mit einer höheren Koordination rechnen.

## Die Kopplungskonstante <sup>3</sup>J<sup>119</sup>SnOCH

Die Kopplung des Zinnkerns mit einem Proton über 3 Bindungen ist in komplexen <sup>1</sup>H-Kernresonanzspektren oft nur schwer zu beobachten und damit unsicher. Tab.2 gibt die sicher aufgefundene Kopplungskonstante <sup>3</sup>J<sub>snocH</sub> für die Verbindung **3c** in verschiedenen Lösungsmitteln wieder. Die vergleichbaren anderen Substanzen besitzen eine zu geringe Löslichkeit, um die Satelliten zweifelsfrei erscheinen zu lassen.

| Tabelle 2 Kopp<br>in versch. Lösun  | olungskonstar<br>gsmitteln | nte <sup>3</sup> J119 <sub>SnOCH</sub> | in Verb. 3c |
|-------------------------------------|----------------------------|----------------------------------------|-------------|
| Lösungsmittel                       | CDCl <sub>3</sub>          | Pyridin                                | Nitrobenzol |
| <sup>3</sup> J <sub>119</sub> SnOCH | 43                         | 41                                     | 43          |

Durch die Donatorwirkung der Lösungsmittel Pyridin und Nitrobenzol zeigt sich keine nennenswerte Wirkung auf die Kopplungskonstante, vgl. auch Tab.1. Das Zinnatom besitzt also schon in Chloroform die trigonale-bipyramidale Konfiguration.

### Die <sup>1</sup>H-Kernresonanzspektren der Ringprotonen

2, 2-gleichartig substituierte 1,3,2-Dioxa-(Dithia-)-stannolane zeigen für die Ringprotonen ein entartetes  $A_4$ -Muster [2, 4, 6]. 2-Methyl-2-Phenyl-1,3,2-Dithiastannolan könnte auf Grund der Anisotropie, die durch die verschiedenartigen Substituenten am Zinn in die Molekel eingebracht wird, eine Aufspaltung der 4 Ringprotonen erwarten lassen, vorläufige Messungen bei Raumtemperatur in verschiedenen Lösungsmitteln sprechen jedoch dagegen [24]. 2-monosubstituierte Dithiaarsolane hingegen zeigen die Anisotropie [25].

In 2,2-disubstituierten 1,3,2-Oxathiastannolanen erzeugen die Ringprotonen ein Spektrum des Typs AA'BB' mit je zwei chemisch äquivalenten Protonen, und in den chiralen Molekeln der 2,2,4-trisubstituierten 1,3,2-Dioxa-(Dithia-)-stannolane verursachen die Ringprotonen ein ABC-Spektrum, dessen C-Teil je nach Art des Substituenten in Position 4 aufgespalten ist.

Die beiden letzten Arten der Spektren, deren typisches Erscheinungsbild in Abb. 1 und 2 vorgestellt wird, lassen die Bestimmung jener Kopplungskonstanten zu, die in enger Beziehung zur Konformation der Fünfringe stehen.

Die Werte der geminalen Kopplungskonstanten <sup>2</sup>J der Protonen der OCH<sub>2</sub>-Gruppe setzen sich mit einer durchschnittlichen Größe von  $-10 \pm 1$  Hz gegenüber den Werten  $-13 \pm 1$  Hz für die Kopplung in der SCH<sub>2</sub>-Gruppe deutlich ab. Die Abnahme der geminalen Kopplungskonstanten ist klar zu verfolgen in der Reihe vom 1, 3-Dioxolan [26] über 1, 3-Oxathiolan [27] zum 1, 3-Dithiolan [28] und wird als Folge der Elektronegativität des Heteroatoms und vor allem als Folge der stärkeren Welligkeit des Dithiacyclopentans gegenüber dem Sauerstoffanalogon angesehen [29].

Zwingt man das Zinnatom im 1,3,2-Dithiastannolan zur Fünfkoordination, so erhöht sich signifikant die geminale Kopplungskonstante von -12,6 auf

-12,0 Hz, vgl. Tab.3. Zugleich verschiebt sich aber die Resonanz aller beteiligten Protonen nach kleineren magnetischen Flußdichten, so daß der elektronische Effekt vom geometrischen nicht getrennt werden kann.



### Abb. 1

Abb. 2

Abb.1 Tieffeldhälfte des AA'BB'-Musters der Ringprotonen der Verbindung 3b, oben experimentelle, unten berechnete Linienform

Abb.2 ABC-Muster mit Aufspaltung im C-Teil der Ringprotonen der Verbindung 1 b, oben experimentelle, unten berechnete Linienform

| -         |                                |       |            | -             |                   |  |  |
|-----------|--------------------------------|-------|------------|---------------|-------------------|--|--|
| Verb. Nr. | <sup>2</sup> J <sub>55</sub> , | 3 s   | $\delta_5$ | $\delta_{5'}$ | Lösungsmittel     |  |  |
| 1a        | -12,3                          | 0,4   | 3,20       | 2,82          | CDCl <sub>3</sub> |  |  |
|           | -11,8                          | 0,4   | 3,27       | 2,86          | Pyridin           |  |  |
| 2 a       | -12,6                          | 0,09  | 3,46       | 3,03          | CDCl <sub>3</sub> |  |  |
|           | -12,0                          | 0,3   | 3,51       | 3,11          | Pyridin           |  |  |
| 3 c       | -14,2                          | 0,2   | 2,66       | 2,66          | CDCl <sub>3</sub> |  |  |
|           | -14,0                          | 0,2 • | 2,82       | 2,82          | Pyridin           |  |  |

Tabelle 3 Wirkung des Lösungsmittels auf die geminale Kopplungskonstante in der  $SCH_2$ -Gruppe und auf die chemische Verschiebung

Bei 3 e gelten die angegebenen Werte für Protonen 4 und 4', s ist der mögliche Fehler der Kopplungskonstante aus der Verfeinerungsrechnung. Zur Sicherheit wurde er mal 3 genommen. Die Größen der vielnalen Kopplungskonstanten <sup>3</sup>J spiegeln den mittleren Torsionswinkel im C-C-Fragment des Heterocyclus wider. Der Ausdruck mittlerer Torsionswinkel meint den Zeitdurchschnitt über die Winkel in den einzelnen durch Pseudorotation verknüpften Konformeren.

Projiziert man die Atome am C–C-Fragment in Richtung der C–C-Bindung und nimmt man zwischen den übrigen Bindungen Winkel von 120° an, so kann man pseudoaxiale und pseudoäquatoriale Protonen ( $H_a$  bzw.  $H_e$ ) unterscheiden. Durch schnelle Konformationsänderung werden nun mittlere Kopplungskonstanten gemessen, die sich durch zwei Größen,

$$\begin{aligned} \mathbf{J_{tr}} &= 1/2 \left( \mathbf{J_{aa'}} + \mathbf{J_{ee'}} \right) \\ \mathbf{J_{cis}} &= 1/2 \left( \mathbf{J_{a'e}} + \mathbf{J_{e'a}} \right) \end{aligned}$$

beschreiben lassen, wobei  $J_{aa'}$  die vieinale Kopplung zwischen antiperiplanaren,  $J_{ee'}$  die Kopplung zwischen synclinalen und  $J_{a'e} = J_{e'a}$  die Kopplung zwischen anticlinalen Wasserstoffatomen kennzeichnen [30, 31].

Der Quotient der gemittelten Kopplungskonstanten  $J_{tr}/J_{cis}$  wird R-Wert genannt und ist nur noch von geometrischen Einflüssen abhängig [30].

Tab.4 gibt die mittleren Kopplungskonstanten  $\mathbf{J}_{tr}$  und  $\mathbf{J}_{cis}$ zusammen mit ihren Standardabweichungen, dem R-Wert und den nach

$$\varphi = \arccos (3/(2 + 4R))^{1/2}$$

ermittelten Torsionswinkel $\varphi$  und seinen aus den Standardabweichungen sich ergebenden maximalen Fehler an.

| Verb.<br>Nr. | $J_{tr}$ | S    | $J_{cis}$ | S    | R    | φ            | $\varDelta \varphi$ | Lösungs-<br>mittel |
|--------------|----------|------|-----------|------|------|--------------|---------------------|--------------------|
| 1a           | 7,80     | 0,19 | 2,83      | 0,2  | 2,76 | 61,3         | 1,3                 | CDCl <sub>3</sub>  |
|              | 8,23     | 0,18 | 2,97      | 0,19 | 2,77 | 61, 4        | 1,0                 | Pyridin            |
| 2 a          | 10,83    | 0,03 | 2,92      | 0,03 | 3,71 | <b>65,</b> 0 | 0,2                 | CDCl <sub>3</sub>  |
|              | 10,74    | 0,09 | 3,03      | 0,09 | 3,55 | 64,5         | 0,5                 | Pyridin            |
| 2 b          | 10,73    | 0,01 | 2,70      | 0,1  | 3,98 | 65,8         | 0,6                 | CDCl <sub>3</sub>  |
|              | 10,61    | 0,07 | 2,94      | 0,12 | 3,61 | 64,7         | 0,4                 | Pyridin            |
| 3 e          | 6,84     | 0,08 | 3,85      | 0,08 | 1,78 | 55,0         | 0,5                 | CDCl <sub>3</sub>  |
|              | 6,63     | 0,2  | 3,46      | 0,2  | 1,92 | 56,1         | 1,4                 | Pyridin            |
| 4 b          | 8,95     | 0,2  | 3,98      | 0,2  | 2,25 | 58,5         | 1,1                 | CDCl <sub>3</sub>  |
| 5            | 9,50     | 0,08 | 4,46      | 0,08 | 2,13 | 57,7         | 0,4                 | CDCl <sub>3</sub>  |

Tabelle 4 Kopplungskonstanten  $J_{tr}$ ,  $J_{cis'}$  Standardabw. s, R-Wert und Torsionsw.  $\varphi$ 

Wie schon erwähnt, beweisen die größeren Torsionswinkel der Dithiastannolane gegenüber den Dioxastannolanen die stärkere Welligkeit des Rings. Die erzwungene höhere Koordination am Zinnatom wirkt sich, wie die R-Werte und Torsionswinkel aus den Spektren in CDCl<sub>3</sub> und Pyridin erkennen lassen, nicht im Sinne einer Abflachung des Cyclopentanheterocyclus aus. Die leichten Unterschiede in den Torsionswinkeln beim Wechsel des Lösungsmittels sind nicht signifikant. Tab.5 gibt die vollständige Liste der spektralen Parameter aller gemessener Stannolane wieder. Die Auswertung der vicinalen Kopplungskonstanten liefert folgende Ergebnisse:

1. Das Heteroatom in Position 1 und 3 bestimmt im wesentlichen den Torsionswinkel und damit die Welligkeit des Rings.

2. Die Substituenten am Zinnatom wirken auf den Torsionswinkel nur unwesentlich ein (1a 61,3° und 1b 62°, 3a 53,7°, 3b 54,5° und 3c 55,0°).

3. Substituenten in Position 4 zeigen mittleren Einfluß (1a 61,3 und 2a 65°).

Dies ist auch die Erklärung für die kleinen Torsionswinkel in Oxathiastannolanen, die in Position 4 nicht substituiert sind.

Tabelle 5 Werte der chemischen Verschiebung (rel. zu TMS in ppm) und Kopplungskonstanten (in Hz) aus der Verfeinerungsrechnung. s = Wurzel aus den Fehlerquadraten zwischen beobachtetem und berechnetem Spektrum der Verbindungen 2,2-R<sub>2</sub><sup>1</sup>-4-R<sup>2</sup>-1,3-X,Y-2-Stannacyclopentan in CDCl<sub>3</sub>. Protonen an Kohlenstoffatomen 4 und 5 erhalten die Bezeichnung 4 und 4' bzw. 5 und 5'

| Verb.] | Nr.R <sup>1</sup>             | $\mathbf{R}^2$                     | х            | Y            | $\delta_4$ | $\delta_{4}'$ | $\delta_5$ | $\delta_{5'}$ | ²J44' | <sup>3</sup> J <sub>45</sub> | 3J4'5 | 3J45'    | ۶J4'5' | ²J 55' | 8    |
|--------|-------------------------------|------------------------------------|--------------|--------------|------------|---------------|------------|---------------|-------|------------------------------|-------|----------|--------|--------|------|
| 1a     | CH₃                           | CH₃                                | s            | $\mathbf{s}$ | _          | 3,53          | 3,20       | 2,82          | _     | _                            | 7,80  | _        | 2,83   | -12,3  | 0,20 |
| 1 b    | C₄H,                          | $CH_3$                             | $\mathbf{s}$ | $\mathbf{s}$ |            | 3,40          | 3,07       | 2,70          | _     |                              | 7,59  | -        | 2,73   | -12,1  | 0,30 |
| 2 a    | CHa                           | $C_{\mathfrak{g}}H_{\mathfrak{s}}$ | $\mathbf{s}$ | s            | _          | 4,28          | 3,46       | 3,03          |       |                              | 10,83 |          | 2,92   | 12,6   | 0,03 |
| 2 b    | C4H9                          | C <sub>6</sub> H <sub>5</sub>      | $\mathbf{s}$ | s            |            | 4,11          | 3,34       | 2,86          | _     | _                            | 10,74 |          | 2,70   | -12,6  | 0,09 |
| 3a     | CH3                           | $\mathbf{H}$                       | 0            | $\mathbf{s}$ | 2,84       | 2,84          | 3,62       | 3,62          | -13,0 | 4,03                         | 6,62  | $6,\!62$ | 4,03   | - 9,62 | 0,13 |
| 3 b    | C <sub>2</sub> H <sub>5</sub> | н                                  | 0            | $\mathbf{s}$ | 2,81       | 2,81          | 3,65       | 3,65          | -14,3 | 3,98                         | 6,87  | 6,87     | 3,98   |        | 0,14 |
| 3 c    | C₄H,                          | $\mathbf{H}$                       | 0            | $\mathbf{s}$ | 2,66       | 2,66          | 3,57       | 3,57          | -14,2 | 3,85                         | 6,84  | 6,84     | 3,85   | -10,8  | 0,11 |
| 4 b    | C4H,                          | CH3                                | 0            | 0            | _          | 3,71          | 3,71       | 3,00          |       |                              | 8,95  | _        | 3,98   | - 9,23 | 0,50 |
| 5      | $C_4H_9$                      | $C_{6}H_{3}$                       | 0            | 0            | -          | 4,53          | 3,80       | $^{3,21}$     | _     |                              | 9,50  | -        | 4,46   | - 9,20 | 0,08 |

#### Literatur

- [1] G. DAVIDOVICS, G. MILLE, M. DELMAS U. G. CHOUTEAU, J. Mol. Struct. 16, 59 (1973).
- [2] M. DELMAS, J. C. MAIRE, W. MCFARLANE U. Y. RICHARD, J. Organomet. Chem. 87, 285 (1975).
- [3] R. C. MEHROTRA u. V. D. GUPTA, J. Organomet. Chem. 4, 145 (1965).
- [4] J. C. POMMIER u. J. VALADE, J. Organomet. Chem. 12, 433 (1968).
- [5] J. BORNSTEIN, B. P. LA LIBERTÉ, F. M. ANDREWS U. J. C. MONTERMOSO, J. Org. Chem. 24, 886 (1959).
- [6] A. FINCH, R. C. POLLER U. D. STEELE, Trans. Faraday Soc. 61, 2628 (1965); R. C. POLLER, Proc. Chem. Soc. (London) 1963, 312.
- [7] S. SAKAI, Y. FUJIMARA U. Y. ISHII, J. Org. Chem. 35, 2344 (1970).
- [8] P. J. SMITH u. R. F. M. WHITE, J. Organomet. Chem. 40, 341 (1972).
- [9] R. C. POLLER U. J. A. SPILLMAN, J. Chem. Soc. A 1966, 958.
- [10] P. SMITH u. L. SMITH, Inorg. Chim. Acta Rev. 7, 11 (1973).
- [11] R. H. HERBER, H. A. STOCKLER U. W. T. MICHLE, J. Chem. Phys. 42, 2447 (1965).
- [12] A. TSCHACH U. K. PÖNICKE, Z. anorg. allg. Chem. 413, 136 (1975).
- [13] J. C. POMMIER, E. MENDES, J. VALADE u. J. HOUSDY, J. Organomet. Chem. 55, C 19 (1973).
- [14] S. M. IQBAL U. L. N. OWEN, J. Chem. Soc. 1960, 1030.
- [15] TH. ZINCKE, Liebigs Ann. Chem. 216, 286 (1883).
- [16] C. W. HAIGH, in Annual Reports on NMR Spectroscopy, Bd. 4, 311. London 1971.
- [17] E. W. ABEL u. D. B. BRADY, J. Organomet. Chem. 11, 145 (1968).
- [18] B. MATHIASCH, Z. anorg. allg. Chem. 412, 71 (1975).
- [19] W. McFarlane, J. Chem. Soc. A 1967, 528.
- [20] J. D. KENNEDY, W. McFARLANE, U. S. PYNE U. B. WRACKMEYER, J. Chem. Soc., Dalton Trans. 1975, 386.

- [21] M. M. MCGRADY U. R. S. TOBIAS, J. Amer. Chem. Soc. 87, 1909 (1965).
- [22] R. GUPTA u. B. MAJEE, J. Organomet. Chem. 40, 97 (1972).
- [23] B. K. HUNTER u. L. W. REEVES, Can. J. Chem. 46, 1399 (1968).
- [24] B. MATHIASCH, unveröffentlicht.
- [25] D. W. AKSNES U. O. VIKANE, Acta Chem. Scand. 27, 1337 (1973).
- [26] W. E. WILLY, G. BINSCH U. E. L. ELIEL, J. Amer. Chem. Soc. 92, 5394 (1970).
- [27] R. KESKINEN, A. NIKKILÄ u. K. PIHLEJA, Tetrahedron 28, 3943 (1972).
- [28] R. KESKINEN, A. NIKKILÄ U. K. PIHLEJA, J. Chem. Soc., Perkin Trans. II 1973, 1376.
- [29] M. ANTEUNIS, G. SWAELENS U. J. GELAN, Tetrahedron 27, 1917 (1971).
- [30] J. B. LAMBERT, Acc. Chem. Res. 4, 87 (1971).
- [31] H. R. BUYS, Rec. Trav. Chim. Pays-Bas 88, 1003 (1969).

Bei der Redaktion eingegangen am 17. November 1975.

Anschr. d. Verf.: Dr. B. MATHIASCH, Inst. f. anorg. Chemie u. analyt. Chemie d. Univ., D-6500 Mainz, Joh.-Joachim-Becher-Weg 24