Azo-coupling and Arylation Reactions of Co-ordinated Polyolefins with Arenediazonium Ions

By Neil G. Connelly,* Andrew R. Lucy, and Mark W. Whiteley (Department of Inorganic Chemistry, University of Bristol, Bristol BS8 1TS)

Summary Reaction of arenediazonium ions with [Fe-(CO) $L_2(\eta^4$ -polyene)] [L = CO or P(OMe)3, polyene = cyclo-octatetraene or cycloheptatriene], and subsequent

deprotonation gives either azo-coupled or arylated compounds such as [Fe(CO) {P(OMe)₃}₂(η^4 -C₈H₇N₂C₆H₄F-p)] and [Fe(CO)₃(η^4 -C₈H₇C₆H₄NO₂-p)] respectively.

The reaction between an arenediazonium ion and a transition metal compound usually results in co-ordination at the metal centre although one-electron oxidation, insertion, or tetrazene complex formation, *etc.* can also occur.¹ We now report that arenediazonium ions react with co-ordinated polyolefins such as cot (cyclo-octatetraene and cht (cycloheptatriene) to give azo-coupled or arylated products.

Scheme. i, $[N_2C_6H_4R-p]$ [BF₄] (R = F or NO₂) in CH₂Cl₂, n=1 or 2; ii, $[N_2C_6H_4NO_2-p]$ [BF₄] in acetone, n=0; iii, Al₂O₃ or NaHCO₃; iv, pyridine; v, Me₃NO,2H₂O. M = Fe(CO)_{3-n}{P-(OMe)₃}_n.

The complex $[Fe(CO)_{3-n}\{P(OMe)_3\}_n(\eta^4\text{-cot})]$ reacts rapidly with $[N_2C_6H_4R-p][BF_4]$ in CH_2Cl_2 $(n=1, R=NO_2, 0$ °C, 90 min, 45%; n=2, R=F, -78 °C, 40 min, 40%) to give the yellow salt $[Fe(CO)_{3-n}\{P(OMe)_3\}_n(\eta^5\text{-}C_8H_8N_2\text{-}C_6H_4R-p)][BF_4]$ (1) via C-N bond formation; ¹H and ¹³C n.m.r. spectroscopy† verified that the iron is bonded to a monosubstituted cyclo-octatrienyl ring (Scheme). By contrast, the tricarbonyl $[Fe(CO)_3(\eta^4\text{-cot})]$ is efficiently arylated by $[N_2C_6H_4NO_2\text{-}p][BF_4]$ (acetone, -20 °C, 15 min, 49%) to give the yellow, bicyclo[5.1.0]octadienyl complex $[Fe(CO)_3(\eta^5\text{-}C_8H_8C_6H_4NO_2\text{-}p)][BF_4]$ (2, Scheme).

Complex (1) is readily deprotonated on Brockman Activity II alumina (n=2, R=F, 13%) or, more effectively, with NaHCO₃ in 40% aqueous acetone $(n=1, R=NO_2, 82\%)$ to give purple-black crystals of the fluxional,

substituted-cot compound $[Fe(CO)_{3-n}\{P(OMe)_{3}\}_{n}(\eta^{4}-C_{8}H_{7}N_{2}C_{6}H_{4}R-p)]$ (3). The symmetry of the room-temperature ${}^{1}H$ n.m.r. spectrum of (3) results from oscillation of the η^{4} -bonded metal group between $C^{2}C^{3}C^{4}C^{3}'$ and $C^{2}'C^{3}'C^{4}C^{3}$ (Scheme).

In the absence of acetone (1, n=1, $R=NO_2$) reacts with aqueous NaHCO₃ to give low yields of a yellow crystalline product [v(CO) (hexane) 1 993, 1 937 cm⁻¹; cf. (3, n=1, $R=NO_2$), v(CO) (hexane) = 2 001, 1 949 cm⁻¹] which is not fully characterised but which mass spectroscopy suggests to be the disubstituted cyclo-octatriene complex [Fe(CO)₂{P(OMe)₃}{ η^4 -C₈H₈(OH)(N₂C₆H₄NO₂-p)}].

Deprotonation of (2) by pyridine in acetone (30 °C, 30 min, 50%) results in opening of the three-membered ring, and formation of red crystalline [Fe(CO)₃(η^4 -C₈H₇C₆H₄NO₂-p)] (4) with fluxional properties similar to those of (3). In certain cases (3) or (4) can be isolated directly from the reaction between [N₂C₆H₄R-p]+ and [Fe(CO)₃- η {P(OMe)₃}_n-(η^4 -cot)]. Thus [Fe(CO)₃(η^4 -cot)] and [N₂Ph][BF₄] (acetone, 25 °C, 24 h) give low yields of [Fe(CO)₃(η^4 -C₈H₇N₂Ph)]. The formation of the azo-coupled product in this reaction reveals that C-N bond formation rather than arylation is not only enhanced by replacement of 'the CO ligands of [Fe(CO)₃(η^4 -cot)] by P(OMe)₃ but also by using arenediazonium ions with less electron-withdrawing substituents.

Displacement of the arylazo-cot ligand from (3, n=2, R=F) is effected by Me₃NO,2H₂O in refluxing benzene. The air-stable, yellow-orange crystalline solid (5) (m.p. 86-88 °C, m/e 226) has a variable-temperature (-60 to +55 °C) ¹H n.m.r. spectrum consistent² with the fluxional, mono-substituted cot ring undergoing both inversion and bond shifts.

Free cot and [$N_2C_6H_4R-p$][BF₄] (R = F or NO₂) in either water or acetone give neither azo-coupled nor arylated cot derivatives. However, whereas [Fe(CO)₃-(η^4 -cht)] undergoes reactions similar to those shown in the Scheme, and $C_7H_7N_2C_6H_4NO_2$ -p, related to (5), can be

(6) X, Y = OH, $N_2C_6H_4NO_2-p$

cleaved from [Fe(CO)₃(η^4 -C₇H₇N₂C₆H₄NO₂-p)], free cht and [N₂C₆H₄NO₂-p][BF₄] in H₂O give high yields of (6) (orange solid, m.p. 170—172 °C, m/e 259).

We thank the S.R.C. for Research Studentships (to A.R.L. and M.W.W.).

(Received, 6th September 1979; Com. 947.)

[†] For the sake of brevity, 1H and ^{13}C n.m.r. spectral data and the results of $^1H-^1H$ and ^{31}P -decoupling experiments, which verify the structures shown in the Scheme, are not given.

¹ D. Sutton, Chem. Soc. Rev., 1975, 4, 443.

² G. I. Fray and R. G. Saxton, 'The Chemistry of Cyclo-octatetraene and its Derivatives,' Cambridge University Press, 1978, pp. 93—94.