March 1978 Communications 207

Cycloaddition Reactions of Dicyanomethylids with Triphenylcyclopropene. A Simple Route to 1,2,3-Triphenylindolizines

Kiyoshi Матѕимото*

Department of Chemistry, College of Liberal Arts and Science, Kyoto University, Sakyo-ku, Kyoto 606, Japan

Takane Uchida

Department of Chemistry, Faculty of Education, Fukui University, Bunkyo, Fukui 910, Japan

Cycloaddition reactions of substituted cyclopropenes to dienes and 1,3-dipoles have provided a facile synthetic entry into the five-, six-, or seven-membered carbo- or heterocyclic ring systems^{1,2}. In this paper, we report a further application of this principle to provide a new route to indolizines³. Arylindolizines are of some medical interest⁴.

Dicyanomethylids $(1 \text{ a-g})^5$ reacted with triphenylcyclopropene (2) in refluxing dimethylformamide to give the corresponding 1,2,3-triphenylindolizines (4 and 5) with formal elimination of malononitrile. Depending on the structures of 1, the formation of 5-cyano-6,7,8-triphenyl-4*H*-quinolizines (7) may predominate. This may be due to less steric effect in the intermediates 6.

A possible mechanism for the formation of 7 involves a cycloaddition of 1 to 2 to give an initial 1,3-dipolar adduct 3⁶ which produces indolizine 4 (and 5) with extrusion of malononitrile, followed by elimination of hydrogen cyanide, and a thermally allowed 1,5-hydrogen shift. In fact, stable dehydrocyanated adducts 6b and 6e in which 1,5-hydrogen shift is possibly obstructed by the adjacent methyl group, were isolated.

A limitation of the present method lies in the unavailability of 2-substituted pyridinium dicyanomethylids; for instance,

	The second secon					
	R ¹	R ²	R ³			
a	Н	Н	———— <u>—</u>			
b	H	Н	CH ₃			
c	Н	CH_3	Н			
d	CH_3	Н	CH ₃			
e	Н	CH_3	CH ₃			
f	Н	$CH_2C_6H_5$	Н			
g	-CH=CH	-CH=CH-CH=CH-				

reaction of 2-methylpyridine with tetracyanooxirane does not give the corresponding dicyanomethylid. No indolizine was obtained when an electron-withdrawing substituent such as a cyano group is present in the pyridine ring. The nature of products formed in the presence of an electron-withdrawing substituent is under investigation.

This type of reaction can be applied to the preparation of azaindolizines, as exemplified by the synthesis of 9 from

Table. Preparation and Physical and Analytical Data of 1,2,3-Triphenylindolizines and 4H- and 9aH-Quinolizines

Product	Yield [%]	m.p.	Molecular formula ^a	M.S. m/e for M ³	I.R. (KBr) ν [cm ⁻¹]	¹H-N.M.R. (CDCl₃) δ [ppm]
4a ^b	25	195–196°	C ₂₆ H ₁₉ N (345.4)	345	1600, 1430	8.01 (d, 1 H, J = 7 Hz); 6.2-7.7 (m, 18 H)
7 a	37	96-98°	$C_{28}H_{20}N_2$ (384.5)	384	1600, 1435, 2260	3.98 (s, 2 H); 6.21 (d, 1 H, J = 4 Hz); 6.6-7.5 (m, 17 H); 7.78 (s, 1 H)
$4b+5b^{c}$	35	167–168°	$C_{27}H_{21}N$ (359.5)	359	1600, 1438	2.01 (s, 2.73 H); 2.17 (s, 0.27 H); 6.3–6.5 (m, 2 H); 6.9–7.5 (m, 15 H); 7.9–8.1 (m, 1 H)
6 b	13	217–218°	$C_{29}H_{22}N_2$ (398.5)	398	1600, 1435, 2250	2.15 (s, 3H); 5.87 (s, 1H); 6.68 (d, 1H, J=9 Hz); 7.1-7.5 (m, 16H); 7.59 (d, 1H, J=9 Hz)
4c	24	157–158°	$C_{27}H_{21}N$ (359.5)	359	1600, 1435	2.25 (s, 3H); 6.1–6.4 (m, 2H); 6.7–7.5 (m, 15H); 7.91 (d, 1H, $J=7$ Hz)
7c ^d	45	173-174°	$C_{29}H_{22}N_2$ (398.5)	398	1603, 1435, 2260	2.28 (s, 3H); 3.96 (bs, 2H); 6.08 (bs, 1H); 6.6–7.5 (m, 15H); 7.82 (s, 1H)
4 d	55	141-142°	C ₂₈ H ₂₃ N (373.5)	373	1603, 1430	1.98 (s, 3 H); 2.10 (s, 3 H); 6.25 (s, 1 H); 6.8-7.4 (m, 15 H); 7.69 (s, 1 H)

Table. (Continued)

Product	Yield [%]	m.p.	Molecular formula ^a	M.S. m/e for M [⊕]	I.R. (KBr) v [cm ⁻¹]	¹ H-N.M.R. (CDCl ₃) δ [ppm]
7d (6d)	0	******				
4e+5ee	41	134–137°	$C_{28}H_{23}N$ (373.5)	373	1600, 1435	1.96 (s, 2.25 H); 2.12 (s, 0.75 H); 2.18 (s, 2.25 H); 2.23 (s, 0.75 H); 6.28 (d, 0.75 H, $J = 6.5$ Hz); 6.2-7.8 (m, 15.5 H); 7.90 (d, 0.75 H, $J = 6.5$ Hz)
6e	24	251-253°	$C_{30}H_{24}N_2$ (412.5)	412	1603, 1440, 2250	2.06 (s, 3H); 2.21 (s, 3H); 5.84 (s, 1H); 7.0-7.8 (m, 17H)
4f	27	155-156°	$C_{33}H_{25}N$ (435.5)	435	1602, 1433	3.87 (s, 2 H); 6.28 (d, 1 H, $J = 8$ Hz); 6.9-7.6 (m, 21 H); 7.99 (d, 1 H, $J = 8$ Hz)
7 f	31	87-89°	$C_{35}H_{26}N_2$ (474.6)	474	1603, 1435, 2260	3.86 (s, 2H); 4.03 (bs, 2H); 6.16 (bs, 1H); 6.6-7.6 (m, 20H); 7.83 (s, 1H)
4g ^f	44	172~173°	$C_{30}H_{21}N$ (395.5)	395	1605, 1435	6.59 (d, 1 H, J=8 Hz); 6.8-7.5 (m, 19 H); 7.76 (d, 1 H, J=8 Hz)
7g (6g)	0			ANAMA N		
9	47	203–205°	$C_{25}H_{18}N_2$ (346.4)	346	1603, 1440	6.7–7.79 (m, 16H); 7.92 (d, 1H, $J = 6$ Hz); 9.00 (s, 1H)

^a All products gave satisfactory microanalyses (C ±0.25%, H ±0.26%, N ±0.35%).

- ^d ¹³C-N.M.R. of 7c (CDCl₃): $\delta = 11.65$ (q, —CH₃); 13.48 (t,
 - $-\underline{C}H_2$ —); 101.85 (d, $=\underline{C}H$); 108.18 (s, $=\underline{C}$ — CH_3); 115.49 (s,
 - —C≡N); 120.08 (d, —CH); 125–140 ppm (complex peaks due to olefinic quaternary and aromatic carbons).
- e^{4} 4e/5e = 75:25 from ¹H-N.M.R. analysis.

ylid 8 (Table). Thus, cyclopropenes may be employed as reagents for the synthesis of indolizines.

Cycloaddition of Dicyanomethylids (1 a-g, 8) and Triphenylcyclopropene (2); General Procedure:

A mixture of the dicyanomethylid (3 mmol) and triphenylcyclopropene (3 mmol) in dry dimethylformamide (15 ml) is heated under reflux with stirring for 4-8 h, during which time the dicyanomethylid goes into solution. The solvent is removed from the resulting dark red solution in vacuo to leave a deep red oil. Chromatography of this oil on silica gel (Wakogel C-100, Wako Pure Chemical Industries, Ltd.) with hexane gives as the first fraction the indolizine which is recrystallized from hexane. Further elution of the column with hexane/benzene (1:1) gives the 4H- or 9aH-quinolizine as an oil, which is purified by recrystallization from hexane/benzene; see Table.

Partial support of our work by a Grand-in-Aid for Developmental Scientific Research from the Ministry of Education is gratefully acknowledged.

Received: September 8, 1977

^b Lit.⁴ m.p. 196–197°.

⁴b/5b = 91:9 from ¹H-N.M.R. analysis.

f For orientation of cycloaddition, see Ref. 7.

¹ For a review see: M. L. Deem, Synthesis 1972, 675.

For a recent publication see: L. A. Kapicak, M. A. Battiste, Synthesis 1971, 153.

J. A. Harvey, M. A. Ogliaruso, J. Org. Chem. 21, 3374 (1976).
For a review of indolizine synthesis see: T. Uchida, K. Matsumoto, Synthesis, 1976, 209.

⁴ V. S. Venturella, J. Pharm. Sci. **52**, 868 (1963).

⁵ W. J. Linn, O. W. Webster, R. E. Benson, J. Am. Chem. Soc. 87, 3651 (1965).

When reaction of 1 a with 2 was carried out in refluxing acetonitrile (3 days), a 1:1 adduct (3; R¹=R²=R³=H) was obtained in a low yield (7%) and no indolizine was detected.

N. Basketter, A. O. Plunkett, J. Chem. Soc. Chem. Commun. 1971, 1578.

T. Kutsuma, K. Fujiyama, Y. Sekine, Y. Kobayashi, *Chem. Pharm. Bull.* 20, 1558 (1972).