STEREOCHEMICALLY RIGID 7-COORDINATE, TRIS(N-PHENYL,N-METHYLDITHIOCARBAMATO) COMPLEXES OF Ti(IV), Zr(IV) AND Hf(IV)

KAILASH CHANDRA,[†] RAJINDER K. TULI, BHAGWAN S. GARG:: and RAFENDRA P. SINGH Department of Chemistry, University of Delhi, Delhi-7, India

(Received 26 October 1979; received for publication 6 March 1980)

Abstract—Tris(N-phenyl,N-methyldithiocarbamato) complexes of the type η^5 -C_sH₅M[S₂CN(C₆H₅)(CH₃)]₃ and η^5 -CH₃C₅H₄M-[S₂CN(C₆H₅)(CH₃)]₃ (where M = Ti, Zr or Hf) have been prepared by the reaction of (C₅H₅)₂MCl₂ or (MeC₃H₄)₂MCl₂ with anhydrous Na[S₂CN(C₆H₅)(CH₃)] in refluxing CH₂Cl₂ or THF. Conductivity measurements and molecular weight determinations indicate that these complexes are monomeric and nonelectrolytic. IR spectra indicate that these complexes the metal centered rearrangement and S₂C⁻⁻⁻N bond rotation both are slow on NMR time scale at ambient temperature. A capped octahedron configuration, a rare geometry is assigned to η^5 -C₅H₅Hf[S₂CN(C₆H₅)(CH₃)]₃.

INTRODUCTION

Stereochemically rigid 7-coordinate tris(N,N-dialkyldithiocarbamato) chelates of the type η^5 -C₅H₅M(S₂CNR₂)₃ or η^5 -MeC₅H₄M(S₂CNR₂)₃ (R = Me, Et and M = Ti or Zr) have been reported[1-6], which assume pentagonal bipyramidal structure. We report herein tris(N-phenyl,N-methyldithiocarbamato) chelates of the type η^5 -C₅H₅M[S₂CN(C₆H₅)(CH₃)]₃ and η^5 -MeC₅H₄M[S₂CN(C₆H₅)(CH₃)]₃ (M = Ti, Zr or Hf). η^5 -C₅H₅Hf[S₂CN(C₆H₅)(CH₃)]₃, reported herein, is the first 7-coordinate dithiocarbamate complex which assumes capped octahedron structure.

EXPERIMENTAL

Reagent and techniques. $Na[S_2CN(C_6H_5)(CH_3)]$ was prepared by the usual method[7] and dried in vacuo over P_2O_5 , first at

Physical measurements. The molecular weights of the complexes were determined ebullioscopically in benzene whereas conductivity of each complex was determined in nitrobenzene using Backman RC-18A conductivity bridge. IR spectra were recorded on Perkin-Elmer 621 grating spectrometer using KBr pellets whereas ¹H NMR spectra in CDCl₃ at a sweep width of 500 Hz were recorded on Varian A-60 spectrometer using TMS as an internal standard.

RESULTS AND DISCUSSION

These complexes have been prepared in high yield by the following reaction

$$L_2MCl_2 + 3Na[S_2CN(C_6H_5)(CH_3)] \xrightarrow[reflux]{CH_2Cl_2} LM[S_2CN(C_6H_5)(CH_3)]_3 + 2NaCl + LNa$$

room temperature and then at 110°. $C_5H_5MCl_2$ (M = Zr or Hf)[8] and (MeC₅H₄)₂MCl₂ (M = Ti or Zr)[9] were prepared by the reaction of C₅H₅Na or MeC₅H₄Na on MCl₄ in THF as described in the literature. Nitrobenzene for conductivity measurements was purified as described by Fay and Lowry[10]. Other organic solvents used were predried and well purified.

Preparation of η^{5} -CH₃C₅H₄Ti[S₂CN(C₆H₅)(CH₃)]₃. (Me-C₅H₄)₂TiCl₂(0.227 g, 0.001 mol) was refluxed with anhydrous Na[S₂CN(C₆H₅)(CH₃)] (0.615 g, 0.003 mol) in CH₂Cl₂ or THF (50 cm³) for 10-12 hr. The reaction mixuure was cooled and filtered. The filtrate was concentrated by distilling off the solvent *in vacuo* and petroleum ether (60-80°) was added to it. The precipitate obtained was collected and dried *in vacuo* and recrystallized from CH₂Cl₂ to give >80% yield of η^{5} -CH₃C₄H₄Ti[S₂CN(C₆H₅)(CH₃)]₃.

Preparation of other complexes. η^5 -C₅H₅Zr[S₂CN(C₆H₅) (CH₃)]₃, η^5 -MeC₅H₄Zr[S₂CN(C₆H₅)(CH₃)]₃ and η^5 -C₅H₅Hf[S₂CN(C₆H₅)(CH₃)]₃. CH₂Cl₂ have been prepared by $(M = Ti, Zr \text{ or } Hf \text{ and } L = C_5H_5 \text{ or } MeC_5H_4).$

In case of hafnium complex η^{5} -C₅H₅[S₂CN(C₆H₅) (CH₃)]₃CH₂Cl₂ is recrystallized from CH₂Cl₂. These complexes are orange yellow to white and are soluble in solvents like CH₂Cl₂, CHCl₃, CS₂, C₆H₆ and THF. These complexes are thermally stable in inert dry atmosphere, however hydrolyse slowly on exposure to air. Moreover solutions hydrolyse relatively rapidly. These complexes are monomeric in benzene and the conductivity measurements in nitrobenzene solution indicate these complexes to be nonelectrolytic. Physical data for these complexes are indicated in Table 1.

IR spectra

The complexes having both monodentate and bidentate dithiocarbamate ligands, such as $Ru(NO)(S_2CNR_2)_3$ (R = Me or Et)[11, 12], $Rh(PPh_3)(S_2CNMe_2)_3$ [13, 14], exhibit additional IR bands not found for the complexes having only bidentate dithiocarbamate ligands such as $Mo(NO)(S_2CNR_2)_3$ (R = Me or Bu)[11, 13, 15]. The more

[†]On study leave from S. D. College, Muzaffar Nagar (U.P.) India.

[‡]Author to whom correspondence should be addressed.

	Conditatitat tu	Molerity	P4) puno	caled.	8	M. W.		M.P. Colour
Baxardmon	ohm-1 om ² mole ⁻¹	in mM	D	H	N	C H N (TI OF ZT Or Hf)	Found (calod.)		
1. ¹⁾⁵ -CH, C _c H, T1-	0. 25	0.05	54.2	4.5	54.2 4.5 6.5 7.3	7.3	069	° 8	Orenge
[s ₂ cn(c ₆ H ₅)(cH ₃)] 3			(53.49) (4.60)(6.24) (7.13)	(4.60)	(6.24)	(1.13)	(0*829)		
2. 75-CEHEZE									
[S, CN(C _c H _c) (CH _c)]	0.22	0.06	49.2	4•0	49.2 4.0 6 .1 12.8	12.8	619	236 ⁰ (đ	236 ⁰ (d) White
			(49.60) (4.10)(6.0) (13.0)	(4.10)	(0°9)	(13.0)	(702, 2)		
3.)) ⁵ -ch,c _e H,z r -	0.24	0.05	50.9	4.4	50.9 4.4 5.9 12.9	12.9	730	215°	White
[s ₂ cx(c ₆ H ₅)(cH ₃)] 3			(50.26) (4.32)(5.86)(12.73)	(4.32)	(5.86)	(12.73)	(716. 2)		
4. ^γ) ⁵ -C _E H _E Ht-	0. 22	0.04	41.5	3.4	41.5 3.4 4.7 20.9	20.9	890	205 ⁰ (đ	205 ⁰ (d) White
[S,CN(C,H,) (CH,)] 2-			(41.17) (3.50)(4.80)(20.41)	(3.50)	(4.80)	(20.41)	(874.5)		

Table 1. Elemental analysis and physical data

significant of these extra bands are a second $\nu_{C^{\oplus N}}$ band near 1470 cm⁻¹[12, 14] and a second $\nu_{C^{\oplus S}}$ band near 1000 cm⁻¹[16]. The IR spectra of these complexes exhibit only one $\nu_{C^{\oplus N}}$ band ~ 1510 cm⁻¹ and only one $\nu_{C^{\oplus N}}$ band ~ 1000 cm⁻¹. Therefore all the dithiocarbamate ligands are bidentate in these complexes.

Pentahapto cyclopentadienyl or methylcyclopentadienyl ring in these complexes is identified by the characteristic IR bands viz., $v_{C-H} \sim 2960 \text{ cm}^{-1}$, $v_{C-C} \sim 1430 \text{ cm}^{-1}$, symmetric ring breathing $\sim 1140 \text{ cm}^{-1}$, C-H asymmetrical in plane deformation $\sim 1060 \text{ cm}^{-1}$, C-H asymmetrical out of plane deformation $\sim 845 \text{ cm}^{-1}$ and symmetrical out of plane deformation $\sim 820 \text{ cm}^{-1}$ [17].

From the above consideration M(IV) in these complexes may be assigned a coordination number 11 and the MS₆C₅ coordination polyhedron may be considered as a distorted icosahedron with one vertex suppressed. Due to relative small size of C_5H_5 or MeC₅H₄ ring, it is considered to occupy a single coordination site. Therefore coordination number seven is assigned to Ti(IV), Zr(IV) or Hf(IV) in these complexes.

NMR spectra

Three kinetic processes affect NMR spectral line shapes of metal dithiocarbamato complexes (i) metal centered rearrangement[18] (ii) S_2C ^{...}N bond rotation[19] and (iii) hindred rotation about the C-N single bonds in the NR₂ portion of the S_2CNR_2 ligand[20]. The expected number and relative intensities of $-CH_3$ and $-C_6H_5$ group resonances in these complexes are indicated in Table 2, for the four idealized structures of seven coordinate complexes.

 $S_2C \xrightarrow{i=1}{N}$ bond rotation in methyl esters MeS_2CNR_2 (R = Me, Et[21]; i-pr, i-Bu[22]), exhibiting ν_{CON} at 1477-1498 cm⁻¹, is reported to be slow at -30° . These complexes exhibit $\nu_{C \longrightarrow N}$ at 1500-1515 cm⁻¹. Therefore the S₂C⁻⁻⁻N bond rotation should be still slower in these complexes. This is further substantiated by the fact that in all the 7-coordinate complexes [1-6] exhibiting $\nu_{C \longrightarrow N}$ at \sim 1500 cm⁻¹, for which metal centered rearrangement is slow, the S₂C⁻⁻⁻N bond rotation is also found to be slow.

Interpretation of ¹H NMR spectra

¹H NMR spectra of η^{5} -CH₃C₅H₄Ti[S₂CN(C₆H₅)(CH₃)]₃ and η^{5} -CH₃C₅H₄Zr[S₂CN(C₆H₅)(CH₃)]₃ at ~ 30° show four different resonances. (i) Two signals of relative intensity 2:1 due to $-C_6H_5$ protons (ii) Two multiplets due to $CH_3C_5H_2$ ring protons (iii) two signals of relative intensity 2:1 due to $-CH_3$ protons attached to N atom and (iv) a sharp signal due to $-CH_3$ protons of $CH_3C_5H_4$. The overall integrals of these resonances are in the ratio (15:4:9:3). The ¹H NMR spectra of η^{5} - $CH_3C_5H_4Ti[S_2CN(C_6H_5)(CH_3)]_3$ is shown in Fig. 1, the ¹H NMR spectrum of η^{5} -C₅H₅Zr[S₂CN(C₆H₅)(CH₃)]₃ exhibits the same pattern except for C5H5 ring protons, a sharp signal is obtained. Considering the slow S₂C....N bond rotation and the 'H NMR spectra of these complexes which indicate a slow metal centered rearrangement, it is clear that these complexes may conform to pentagonal bipyramid or monocapped trigonal prism or tetragonal base-trigonal base (possibility A of Table 2).

The ¹H NMR spectra of η^5 -C₅H₅Hf[S₂CN(C₆H₅) (CH₃)]₃·CH₂Cl₂ exhibits a different pattern. It shows single sharp signal due to -C₆H₅, C₅H₅ ring, CH₂Cl₂ and -CH₃ protons respectively[Fig. 1]. The over all integrals of these signals are in the ratio (15:5:2:9).

Considering the slow S_2C —N bond rotation (as already discussed in IR spectra), and slow metal centered

Symmetry	A	В	C
^D 5h	2	2	1
	(2:1)	(2:1)	_
c _{3v}	1	1	1
°2 ▼	2	2	1
	(2:1)	(2:1)	
°,	2 (2:1)	2 (2:1)	1
	^D 5h ^C 3v ^C 2v	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Table 2. Predicted number and relative intensities for $-CH_3$ or $-C_6H_5$ groups resonances for various rearrangement possibilities in η^5 -C+H_5M[S_2CN(C_6H_3)(CH_3)]_3 or η^5 -CH_3C+H_4M-[S_2CN(C_6H_5)(CH_3)]_3 (where M = Ti, Zr or Hf)

A = Metal centered rearrangement and S_2^{C-1} N bond rotation are both slow on the n.m.r. time scale at ambient temperature

 $B = S_2 C \xrightarrow{\cdots} N$ bond rotation is fast but metal centered rearrangement is slow.

C = Metal centered rearrangement is fast
$$(S_2^{C_{2}} \ \mathbb{N}$$
 bond rotation is fast or slow).

Cemplex es	-c ₆ H5 protone	C ₅ H ₅ r1ng protous	cH ₃ c ₅ H ₄ ring protons	CH ₂ C1 ₂ protons	-сн ₃ ртотопа оf [s ₂ си(с ₆ н ₅)(сн ₃)]	CB prot- ons of CH3C5H4
 η⁵-cH₃ a₅H₄T₄ [3₂cH(a₆H₅)(cH₃)]₃ 	-429; -424	·	-350; -327 (m) (m)	ı	-211; =208	- 129
2. $\gamma^{5-0_{5}H_{5}ZR}$ $\left[s_{2}CH(c_{6}H_{5})(c_{H_{3}})\right]_{3}$	-4354 -430	-361	ı	ı	-213; -210	I
3. η ⁵ -cH ₃ c ₅ H ₄ Zr- [s ₂ cH(c ₆ H ₅)(cH ₃)] ₃	-433; -428	1	355;328 (m) (m)	I	-214; -211	-130
 4. η⁵-c₅H₅H⁴- [s₂cw(c₆H₅)(cH₃)] 3- cH₂cl₂ 	- 438	- 358	ı	-314	-212	i

Table 3. Proton chemical shifts (in Hz) at 30° in CDCl₃

m = multiplet

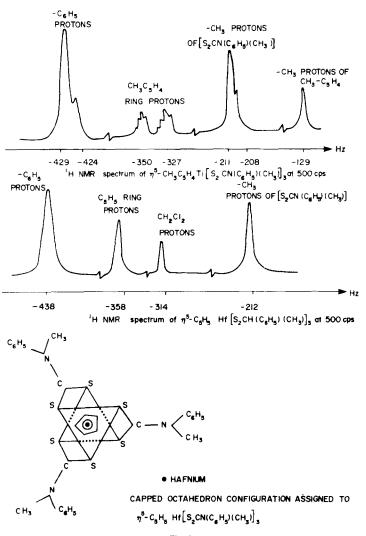


Fig. 1.

rearrangement (shown slow in similar complexes of the type η^{5} -C₅H₅Hf[S₂CNR₂]₃ (where R = Me or Et[23] or ipr[6]), η^{5} -C₅H₅Hf[S₂CN(C₆H₅)(CH₃)]₃·CH₂Cl₂ conforms to a capped octahedron configuration (possibility A of Table 2).

Thus η^5 -C₅H₅Hf[S₂CN(C₆H₅)(CH₃)]₃·CH₂Cl₂ is the first 7-coordinate dithiocarbamato complex, which assumes a capped octahedron geometry as shown in Fig. 1.

Acknowledgement-One of the authors (K.C.) thanks the University Grants Commission, New Delhi for the award of teacher fellowship under the Faculty Improvement Programme.

REFERENCES

- 1. V. K. Jain, B. S. Garg and R. P. Singh, Aust. J. Chem. 30, 2545 (1977).
- 2. D. Nath, Ph.D. Thesis, University of Delhi (1976).
- 3. A. H. Bruder, R. C. Fay, D. F. Lewis and A. A. Sayler, J. Am. Chem. Soc. 98, 6932 (1976).
- 4. V. K. Jain and B. S. Garg, J. Inorg. Nucl. Chem. 40, 239 (1978).
- 5. W. L. Steffen, H. K. Chun and R. C. Fay, Inorg. Chem. 17, 3498 (1978).
- 6. R. K. Tuli, P. Soni, K. Chandra, R. K. Sharma and B. S. Garg, J. Inorg. Nucl. Chem. To be published.
- H. L. Klopping and G. J. M. Vander Kerk, Recl. Trav. Chim. Pays-Bas 70. 917 (1951).

- 8. P. M. Druce, B. M. Kingston, M. F. Lappert, T. R. Spalding and R. C. Srivastava, J. Chem. Soc. Ap.2106 (1969).
- 9. L. T. Reynolds and G. Wilkinson, J. Inorg. Nucl. Chem. 9, 86 (1959).
- 10. R. C. Fay and R. N. Lowry, Inorg. Chem. 6, 1512 (1967).
- 11. B. F. G. Johnson, K. H. Al-obaidi and J. A. Mccleverty, J. Chem. Soc. A 1668 (1969),
- 12. A. Domenciano, A. Vaciago, L. Zambonelli, P. L. Loader and L. M. Venanzi, Chem. Commun. 476 (1966).
- 13. R. Davis, M. N. S. Hill, C. E. Holloway, B. F. G. Johnson and K. H. Al-obaidi, J. Chem. Soc. A 994 (1971).
- 14. C. O'Connor, J. D. Gilbert and G. Wilkenson, J. Chem. Soc. A 84 (1969).
- 15. T. F. Brennan and I. Bernal, Chem. Commun. 138 (1970); Inorg. Chim. Acta 7, 283 (1973).
- 16. F. Bonati and R. Ugo, J. Organometal. Chem. 10, 257 (1967).
- 17. H. P. Fritz, Adv. Organometal. Chem. 1, 305 (1964).
- 18. M. C. Palazzotto, D. J. Duffy, B. L. Edgar, L. Que Jr, and L. H. Pignolet, J. Am. Chem. Soc. 95, 4537 (1973), and Refs. therein.
- 19. B. L. Edgar, D. J. Duffy, M. C. Palazzotto and L. H. Pignolet, J. Am. Chem. Soc. 95, 1125 (1973), and Refs. therein.
- 20. R. M. Golding, P. C. Healy, P. W. G. Newman, E. Sinn and A. H. White, Inorg. Chem. 11, 2435 (1972).
- 21. C. E. Holloway and M. H. Gitlitz, Can. J. Chem. 45, 2659 (1967).
- 22. A. F. Lindmark and R. C. Fay, unpublished results.
- 23. R. K. Tuli, P. Soni, K. Chandra, R. K. Sharma and B. S. Garg, Trans. Metal Chem. To be published.