The Stereochemistry of Substitutions at Germanium

By C. EABORN,* R. E. E. HILL, and P. SIMPSON

(School of Molecular Sciences, University of Sussex, Brighton, BN1 9QJ)

OPTICALLY ACTIVE germanium compounds, first prepared some five years ago,^{1,2} were shown to undergo some reactions with a fair degree of stereospecificity.¹⁻⁴ We have now examined a range of reactions of optically active ethyl-(1-naphthyl)-phenylgermanium compounds, R₃GeX, with nucleophilic reagents, and the results are summarized in the Table. The stereochemical assignments are based on Brewster's rules⁵ (which seem to apply well to germanium and silicon compounds^{3,6,7}) and lead to internal consistency.

Loss of optical activity seems generally to be greater than in comparable reactions of methyl-(1-naphthyl)phenylsilicon compounds. However, the Walden cycle (i) occurs with 90%, the cycle

(ii) with 68%, and the cycle (iii) with 72% overall stereospecificity:

(i)
$$(+)$$
-R₃GeH \rightarrow (-)-R₃GeCl \rightarrow (-)-R₃GeH
[α]_D²⁵ +22·5° -10·7° -17·9°

(ii)
$$(+)$$
-R₃GeH \rightarrow (-)-R₃GeCl \rightarrow (+)-R₃GeSPh $+20\cdot0^{\circ}$ $-9\cdot2$ $+14\cdot2$ \rightarrow (+)-R₃GeH $+7\cdot0$

$$\begin{array}{cccc} \text{(iii)} & (+)\text{-R}_3\text{GeH}\!\to\!(-)\text{-R}_3\text{GeCl}\!\to\!(-)\text{-R}_3\text{GeNC}_4\text{H}_4 \\ & [\alpha]_D^{25} & +21\cdot5 & -9\cdot0 & -1\cdot3 \\ & & \to (+)\text{-R}_3\text{GeH} \\ & & +9\cdot5 \end{array}$$

Some loss of optical activity is not surprising, since the chloride (-)-R₃GeCl is known to racemize fairly readily in solution,9 as is the closely related chloride Me-(1-C₁₀H₇)PhGeCl,¹⁰ and the hydride while retention occurs with the poorer leaving groups OMe, menthoxide, and OGeR3. In cases in which the corresponding reactions for Me-(1-C₁₀H₇)PhSiX compounds have also been studied,

Reactions of optically active Et-(1-C10H2)PhGeX Compounds

Reaction						Predominant
No.	$ m R_3GeX$	$[lpha]_{ m D}^{250}$	Reagents, etc.	Product(s)	$[lpha]_{\mathbf{D}}^{250}$	stereochemistry
(1)	R_a GeCl	-8.2	MeOH, Pri, NH	R_3 GeOMe	4.9	Inv.
(2)	R_3 GeCl	-9.0	PhSH,Pr ¹ ,NH	R_3 GeSPh	+21.5	Inv.
(3)	R_3 GeCl	-7.0	H ₂ S,Et ₃ N	R_3 GeSGe R_3	+29.9	Inv.b
(4)	R_3 GeCl	-10.7	LiAlH ₄ ,Et ₂ O	R₃GeH	-17.2	Inv.c
(2) (3) (4) (5) (6) (7)	R_3 GeCl	-9.0	Bu¤Li,Ēt₂Ō	R _a GeBu ⁿ	+6.3	Inv.
(6)	R_3 GeCl	-9.0	MeLi,Et,O	R_3 GeMe	+1.6	Inv.
(7)	R_3 GeCl	-9.0	N-lithiopyrrole,	$R_{4}GeNC_{4}H_{4}$	-1.3	Inv.
	_		Et ₂ O			
(8)	R_3 GeOMe	-4.9	LiAlH₄,Et₂O	R_3GeH	-6.0	Ret.
(9)	R_4 GeOMe	+3.6	Bu¤Li,Ét₂Õ	R_3GeBu^n	-2.7	Ret.
(10)	R_3 GeOMend	-63.8	LiAlH ₄ ,Et ₂ O	R_3 GeH	+22.6	Ret.
(11)	R_3 GeOMend	-63.8	Bu¤Li,Et₂O	R_3 Ge Bu^n	-5.6	Ret.
(12)	R_3 GeSPh	+14.2	LiAlH ₄ ,Et ₂ O	R_3 GeH	+7.0	Inv.
(13)	$R_3GeSGeR_3$	+21.5	BunLi,Et ₂ O	R ₃ GeBu ⁿ ,	-2.2	Inv.
			(2 hr.)	$R_3GeSGeR_3$	+ e	
(14)	$R_3GeSGeR_3$	+21.5	BunLi,Ét ₃ O	R ₃ GeBu ⁿ	0.0	
, .	•		(24 hr.)	· ·		
(15)	$R_3GeNC_4H_4$	-1.3	LiÀlH₄,Ét₂O	R_s GeH	+9.5	Inv.
(16)	R_3 GeNC $_4$ H $_4$	-1.3	BunLi,Ét₂Õ	R _s GeBu ⁿ	-3.5	Inv.
, ,	(1) (2)		, <u>-</u>	•		
(17)	$R_3GeO_2CGeR_3$	-10.0	LiAlH ₄ ,Et ₂ O	R_3GeH	-2.8	Inv. (Ge-1)
` '			2- 2	R_3 GeCH,OH	$+2\cdot0$	Ret. (Ge-2)
	(1) (2)				•	, ,
(18)	$R_3Ge[OGeR_3-(\pm)]$	+1.7	LiAlH4,Et2O	R_3GeH	+1.6	Ret. (Ge-1)
			• •	R_3 GeOGe R_3	•	` '
				-		

a Rotations were measured in benzene. b Inversion occurs at both germanium centres. c Cf. ref. 4. d Refers to the (-)-menthoxide. e Not isolated. Inversion occurs at one germanium centre and retention at the other.

(+)-R₃GeH racemizes readily (without significant decomposition) when heated at 100°.9

It will be seen from the Table that in the reactions so far studied inversion apparently occurs with the relatively good leaving groups (cf. ref. 8) Cl, SPh, SGeR₃, NC₄H₄, and O₂CGeR₃,

viz., reactions (1), (3)—(6), (8)—(11), and (18), 8,11 the predominant stereochemical consequences are the same as for the germanium compounds.

We thank the S.R.C. for support and for a studentship (to R.E.E.H.).

(Received, July 4th, 1968; Com. 887.)

¹ R. W. Bott, C. Eaborn, and I. D. Varma, Chem. and Ind., 1963, 614.

² A. G. Brook and G. J. D. Peddle, J. Amer. Chem. Soc., 1963, 85, 1869.
³ A. G. Brook and G. J. D. Peddle, J. Amer. Chem. Soc., 1963, 85, 2338.
⁴ C. Eaborn, P. Simpson, and I. D. Varma, J. Chem. Soc. (A), 1966, 1133.
⁵ J. H. Brewster, J. Amer. Chem. Soc., 1959, 81, 5475.
⁶ A. G. Brook and W. W. Limburg, J. Amer. Chem. Soc., 1963, 85, 833.

⁷ R. E. E. Hill, D.Phil. Thesis, University of Sussex, 1968.

⁸ L. H. Sommer, 'Stereochemistry, Mechanism and Silicon,' McGraw-Hill, New York, 1965.

C. Eaborn, P. Simpson, and Ruth A. Walsingham, unpublished work.
 F. H. Carre, R. J. P. Corriu, and R. B. Thomassin, Chem. Comm., 1968, 560.

¹¹ L. H. Sommer and J. McLick, J. Amer. Chem. Soc., 1967, 89, 5806.