Novel Alkylation of Penicillanates

By J. P. CLAYTON, J. H. C. NAYLER,* R. SOUTHGATE, and PATRICIA TOLLIDAY (Beecham Research Laboratories, Brockham Park, Betchworth, Surrey)

Summary Treatment of p-methoxybenzyl 6β -(triphenylmethylamino)penicillanate (Ia) with methyl iodide and strong anhydrous base caused selective cleavage of the thiazolidine ring to give 1-(1-p-methoxybenzyloxycarbonyl-2-methylprop-1-enyl)-4*R*-methylthio-3*R*-(triphenylmethylamino)azetidin-2-one (IIa) which was converted into analogues of penicillins containing a non-fused β -lactam ring.

As part of a study of compounds related to penicillins we examined the alkylation of esters of various penicillanic acids. When esters of penicillanic acid (I; X = H, Y = OH) or its 6-acylamino-derivatives were treated with methyl iodide in dry tetrahydrofuran containing a strong base (preferably sodium hydride or potassium t-butoxide) the products no longer contained the β -lactam ring. However, similar treatment of the 6-triphenylmethylamino-compound (Ia)†, m.p. 137–139°, [prepared by tritylation of (Ib)] gave the non-fused β -lactam (IIa)†, m.p. 126–128°, ν_{max} (CHCl₃) 1760 (β -lactam carbonyl), 1718 ($\alpha\beta$ -unsaturated ester), and 1615 cm⁻¹ (C=C). The n.m.r. spectrum‡

 $([{}^{2}H_{6}]Me_{2}CO)$ showed signals at δ 1.57 (3H, s), 1.95 (3H, s), 2.17 (3H, s), 3.78 (3H, s), 4.41 (1H, d, *J* 5 Hz), 4.52 (1H, d, *J* 5 Hz), 4.87 (1H, d, *J* 12 Hz), 5.17 (1H, d, *J* 12 Hz), and 6.6—7.7 p.p.m. (19H). Formation of (IIa) involves cleavage of the 1,2-bond of the thiazolidine ring of (Ia), as in the known reactions of penam sulphoxides,¹ but the only precedent for a selective cleavage of the sulphides appears to be the base-promoted intramolecular rearrangement of the acid chlorides (Ic) or mixed anhydrides to anhydropenicillins² (III) and of the chloromethyl ketone (Id) or analogues thereof to (IV).³

Since structure (II) can be regarded as a monocyclic analogue of both penams and Δ^3 -cephems it was of interest to convert the ester (IIa) into acids more closely related to the biologically active penicillins and cephalosporins. Treatment of (IIa) with toluene-p-sulphonic acid in acetone at 0° gave the toluene-p-sulphonate salt of the amine (IIb),† m.p. 154—155°, ν_{max} (mull) 1805, 1722, and 1630 cm⁻¹, δ ([²H₆]Me₂SO) 1.96 (3H, s), 2.06 (3H, s), 2.19 (3H, s), 2.31 (3H, s), 3.76 (3H, s), 4.88 (1H, d, J 5 Hz), 5.15 (1H, d,

† Satisfactory elemental analysis.

[‡] N.m.r. spectra were recorded on a Varian A60 spectrometer using Me₄Si as internal reference.

CHEMICAL COMMUNICATIONS, 1971

J 5 Hz), 5.19 (2H, s), and 6.86-7.66 p.p.m. (8H). Acylation of the free amine (IIb)[†] (m.p. 78-79°) with phenoxyacetyl chloride and triethylamine in dichloromethane over 5 min at -20° gave the amide (IIe), † m.p. 120-122°, vmax (CHCl₃) 3400, 1770, 1720, 1695, and 1615 cm⁻¹, S (CDCl₃) 1.86 (3H, s), 2.00 (3H, s), 2.25 (3H, s), 3.80 (3H, s), 4.58 (2H, s,), 5.00 (1H, d, J 12 Hz), 5.06 (1H, d, J 5 Hz), 5.30 (1H, d, J 12 Hz), 5.45 (1H, q, J 5 Hz), and 6.8-7.5 p.p.m. (10H). Finally the p-methoxybenzyl group was removed by treatment with trifluoroacetic acid in benzene to give the analogue (IIf) of penicillin V (If) as a foam, λ_{max} (EtOH) 235 nm (¢ 5300), vmax (CHCl₃), 3400, 1770, 1690br, and 1630 cm⁻¹; δ (CDCl₃) 2.01 (3H, s), 2.07 (3H, s), 2.30 (3H, s), 4.52 (2H, s), 5.28 (1H, d, J 5 Hz), 5.56 (1H, q, collapsing to doublet J 5 Hz on addition of D_2O), and 6.8-7.7 p.p.m. (6H, Ar, NH).

Similarly the condensation product of sodium (R)- α aminophenylacetate and methyl acetoacetate (V; X = Na) was converted into the mixed anhydride⁴ (V; $X = CO_2Et$) and allowed to react with (IIb) in ethyl acetate to give the

corresponding amide (IIg)† as a foam, ν_{max} (CHCl_3) 3390, 3250, 1770, 1720br, 1690, and 1655 cm^{-1} , δ (CDCl₃) 1.53 (3H, s), 1.82 (3H, s), 1.90 (3H, s), 2.22 (3H, s), 3.64 (3H, s), 2.77 (3H, s), 4.59 (1H, s), 4.92 (1H, d, J 5 Hz), 4.99 (1H, d, J 11 Hz), 5.15 (1H, d, J 7 Hz collapsing to singlet on addition of D₂O), 5.26 (1H, d, J 11 Hz), 5.45 (1H, q, collapsing to doublet J 5 Hz on addition of D₂O), 6.8-7.6 (10H, Ar, NH), and 9.45 (1H, d, exchangeable, J 7 Hz). Removal of the amine and carboxy-protecting groups with trifluoroacetic acid gave the R-amino-acid (IIh) as an amorphous solid, λ_{max} (EtOH) 240 nm (ϵ 4470), ν_{max} (mull) 1760 and 1680br cm⁻¹. This compound is an analogue of the important antibiotics ampicillin (Ih) and cephalexin (VI).

The β -lactam ring in the new 3*R*-acylamino-1-(1-carboxy-2-methylprop-1-enyl)-4R-methylthioazetidin-2-ones was less reactive than that in penicillins, giving no hydroxamic acid when treated with neutral hydroxylamine under the usual conditions of the penicillin assay procedure,⁵ and neither (IIf) nor (IIh) had significant antibacterial activity.

(Received, April 20th, 1971; Com. 612.)

¹ R. B. Morin, B. G. Jackson, R. A. Mueller, E. A. Lavagnino, and W. B. Scanlon, J. Amer. Chem. Soc., 1963, 85, 1896; L. D. Hatfield, J. Fisher, F. L. Jose, and R. D. G. Cooper, Tetrahedron Letters, 1970, 4897; D. H. R. Barton, D. G. T. Greig, G. Lucente, J. Construction of the const P. G. Sammes, M. V. Taylor, C. M. Cooper, G. Hewitt, and W. G. E. Underwood, Chem. Comm., 1970, 1683.
² S. Wolfe, J. C. Godfrey, C. T. Holdrege, and Y. G. Perron, J. Amer. Chem. Soc., 1963, 85, 643.
³ B. G. Ramsay and R. J. Stoodley, Chem. Comm., 1970, 1517.
⁴ G. R. Fosker, J. H. C. Nayler, and J. A. Wilcox, B.P. 991,586/1965.
⁵ J. H. Ford, Ind. and Eng. Chem. (Analytical Edition), 1947, 19, 1004.