A Carbonyl-bridged, Phosphite-substituted Cobalt Carbonyl Derivative

By B. L. BOOTH, M. GARDNER, and R. N. HASZELDINE*

(Department of Chemistry, University of Manchester Institute of Science and Technology, Manchester M6O 1QD)

Summary The carbonyl-bridged isomer of the compound $\{Co(CO)_2[P(OCH_2)_3CEt]_2\}_2$ has been isolated from the reaction between HCo(CO)₂[P(OCH₂)₃CEt]₂ and butadiene.

OCTACARBONYLDICOBALT1 and its mono- and di-substituted derivatives^{2,3} have been shown by i.r. spectroscopy to exist

as equilibrium mixtures of bridged and non-bridged forms in solution. Carbonyl-bridged isomers of the compounds $\text{Co}_2(\text{CO})_5(\text{PMe}_3)_3$ and $\text{Co}_2(\text{CO})_4(\text{PMe}_3)_4$ have recently been briefly reported,4 and a novel route to related bridged isomers of cobalt carbonyl is now described.

When $HCo(CO)_2[P(OCH_2)_3CEt]_2$, prepared (81%) from the reaction between $HCo(CO)_4$ and $P(OCH_2)_3CEt$ at 0° in diethyl ether,6 reacts with an excess of butadiene at room temp. for 7 days, the major product, isolated (60%) after chromatography, was a yellow-brown solid of molecular formula $\{Co(CO)_2[P(OCH_2)_3CEt]_2\}_2$. Its i.r. spectrum, which showed two strong bands in both the terminal and bridging metal carbonyl regions, was similar to the spectra reported for the compounds $(Ph_3P)_2(CO)Rh(CO)_2Rh(CO)$ - $(PPh_3)_2$, and $(Me_3P)_2(CO)Co(CO)_2Co(CO)(PMe_3)_2$, and is thus assigned the bridged structure [EtC(CH2O)3P]2(CO)- $Co(CO)_2Co(CO)[P(OCH_2)_3CEt]_2$ (I).

Other minor products isolated from the reaction with butadiene included another carbonyl-bridged complex $[EtC(CH_2O)_3P]_2(CO)Co(CO)_2Co(CO)_2[P(OCH_2)_3CEt]$ 6%); the π -allyl complex, $(\pi - C_4H_7)Co(CO)[P(OCH_2)_3CEt]_2$ [(III); 3%]; the hydride HCo(CO)[P(OCH₂)₃CEt]₃ [(IV); 4%], which has also been prepared (70%) by heating HCo(CO)₂[P(OCH₂)₃CEt]₂ with an excess of the phosphite ligand at 80° for 1 hr. in the solid state;6 and an ionic complex $\{Co(CO)_2[P(OCH_2)_3CEt]_3\}^+$ $[Co(CO)_4]^-$ [(V); 9%].This last compound had good conductivity in nitromethane solution, and showed a strong band in its i.r. spectrum at 1896 cm.⁻¹ for the [Co(CO)₄] group; this band was absent from the spectrum fo its tetraphenylborate derivative ${Co(CO)_2[P(OCH_2)_3CEt]_3}^+ BPh_4^- (VI).$

Compound (I) does not rearrange to the corresponding

1389

non-bridged isomer after several hours in solution under a nitrogen atmosphere. On heating at 80° for 2 days in solution compound (I) decomposes to give an unidentified ionic cobalt-carbonyl complex.

Attempts to obtain (I) or its non-bridged isomer from

The reaction of butadiene with $HCo(CO)_2[P(OPh)_3]_2$, prepared (65%) from the reaction between HCo(CO)4 and P(OPh)₃ in diethyl ether at 0°,5 gave a 47% yield of an unstable, yellow-brown oil of molecular formula {Co(CO)₂-[P(OPh)₃]₂}₂. This compound showed a strong, broad

	TABLE	
Colour	M.p. (°)	v_{co} bands (cm. ⁻¹) ²
Yellow-brown Dark-brown Yellow White Pale yellow Pale yellow Pale yellow	100 (decomp.) 95 (decomp.) 155 (decomp.) 180 (decomp.) 135 (decomp.) 160 (decomp.) 200 (decomp.)	2001s, 1979s, 1798s, 1777s 2038m, 2000s, 1980s, 1812s, 1795s 1955m—s 2000s [vc,-H 1972m] 2079m, 2028s, 1896vs 2079, 2028s 2057m, 2024s, 1897vs
Pale yellow	200 (decomp.)	(2000s, 1890vs) ^b 2057m, 2024s (2000s) ^b
Yellow-brown Orange	87—88	ca. 2000br.s, ca. 1780br.s 1969m—s
	Yellow-brown Dark-brown Yellow White Pale yellow Pale yellow Pale yellow Yellow-brown	Yellow-brown 100 (decomp.) Dark-brown 95 (decomp.) Yellow 155 (decomp.) White 180 (decomp.) Pale yellow 135 (decomp.) Pale yellow 160 (decomp.) Pale yellow 200 (decomp.) Pale yellow 200 (decomp.) Yellow-brown —

^a Unless stated spectra recorded on solutions in CH₂Cl₂; ^b spectrum recorded as a mull in Nujol.

octacarbonyldicobalt by heating it with an excess of P(OCH₂)₃CEt at 65-70° for 30 hr. in the absence of solvent were unsuccessful. The major product from this reaction was the ionic complex {Co(CO)[P(OCH₂)₃CEt]₄}+ [Co(CO)₄] - [(VII); 93%], identified by preparation of its tetraphenylborate derivative (VIII), and by synthesis (80%) from compound (V) by heating with an excess of phosphite ligand in the solid state for 50 hr. at 65-70°. A comparison of the i.r. spectra of (VII) or (VIII) taken on a mull in Nujol and on a solution in CH₂Cl₂ (Table) indicates that in solution these compounds exist as a mixture of the two possible isomers (VIIa or VIIIa) and (VIIb or VIIIb).

band in both the terminal and bridging metal carbonyl regions of its i.r. spectrum suggesting a structure [(PhO)₃P]₂- $(CO)Co(CO_2)Co(CO)[P(OPh)_3]_2$ (IX). Other products isolated from this reaction were the π -allyl complex $(\pi - C_4 H_7) Co(CO) [P(OPh)_3]_2 [(X); 19\%]$, and the previously reported¹⁰ compound [Co(CO)₃P(OPh)₃]₂ (16%).

Satisfactory elemental analyses have been obtained for all the compounds mentioned.

M.G. thanks the S. R. C. for a studentship grant.

(Received, September 5th, 1969; Com. 1347.)

- ¹G. Bor, Spectrochim. Acta, 1963, 19, 2065; K. Noack, ibid., 1963, 19, 1925; K. Noack, Helv. Chim. Acta, 1964, 47, 1555.
- ² G. Capron-Cotigny and R. Poilblanc, Bull. Soc. chim. France, 1967, 1440.
- A. R. Manning, J. Chem. Soc. (A), 1968, 1135; 1665.
 C. Pegot and M. Poilblanc, Compt. rend., 1969, 268, C, 955.

- ⁵ R. F. Heck, J. Amer. Chem. Soc., 1963, 85, 1220; 1965, 87, 2572.
 ⁶ B. L. Booth, R. N. Haszeldine, and M. B. P. McLeod, unpublished results from this Department.
 ⁷ D. Evans, G. Yagupsky, and G. Wilkinson, J. Chem. Soc. (A), 1968, 2660.
 ⁸ S. Attali and R. Poilblanc, Compt. rend., 1968, 267, C, 718.
 ⁹ W. Hisbor and H. Duchtsch, Chem. Page. 1965, 98, 2932.

- W. Hieber and H. Duchatsch, Chem. Ber., 1965, 98, 2933.
 A. Sacco and M. Freni, Ann. Chim. (Italy), 1958, 48, 218; W. Hieber and W. Freyer, Chem. Ber., 1958, 91, 1230; 1960, 93, 462.