	R ¹	R ²	R ³	R ⁴	R ⁵
а	н	н	н	н	н
b	OCH3	н	н	OCH ₃	н
C	-0-0	CH2-0-	OCH ₃	ОСН3	OCH ₃

Table. Experimental Conditions and Results of the Synthesis of 2a from 1a

Solvent	Methylating Agent	Yielda (%)
DMSO	(CH ₃) ₂ SO ₄	23 ^b
НМРГ	(CH ₃) ₂ SO ₄	43 ^b
HMPT	CH ₃ SO ₂ F	70 ^{b.c}

- a Isolated yields.
- h Reaction conditions: 25°, 4 min.
- Reaction conditions: 5°, 4 min.

α-Methoxystilbene (2a) (Typical Methylation Procedure):

Deoxybenzoin³ Ia (1.0 g, 5.5 mmol) was dissolved in hexamethylphosphoric triamide (30 ml) under a nitrogen atmosphere and the solution was cooled to 5" by means of an ice bath. Potassium t-butoxide (1.7 g, 14.2 mmol) was added and the mixture was stirred 4 min. Methyl fluorosulfonate (1.8 g, 13 mmol) was added, the mixture was stirred 3 min, and then quenched by pouring into water (100 ml). The water solution was extracted with ether $(3 \times 50 \text{ ml})$. The combined ether layers were dried over magnesium sulfate, and the solvent was removed to afford an oil which solidified upon addition of a few ml of methanol. Recrystallization from methanol afforded trans- α -methoxystilbene; yield: 0.75 g (70%); m.p. 54.5 55" (lit. 1, 51.5-52").

4,4',a-Trimethoxystilbene 2b:

The general procedure utilizing deoxyanisoin³ **1b** (1.0 g) afforded white crystals of **2b**; yield: 0.8 g (77%); m.p. 114-115° (from methanol).

C₁₇H₁₈O₃ calc. C 75.53 H 6.71 (270.3) found 75.47 + 6.48 U.V. (C11₃OH): λ_{max} = 297 nm (log ϵ = 4.48).

3,4-Methylenedioxy- α -3',4',5'-tetramethoxystilbene 2c:

The general procedure utilizing 1c⁴ (0.55 g) afforded yellow crystals of 2c; yield: 0.4 g (70%); m.p. 130.5-131° (from methanol).

C₁₉H₂₀O₆ calc. C 66.27 H 5.85 (344.4) found 65.97 5.59

U.V. (CH₃OH): $\lambda_{\text{max}} = 314 \text{ mm (log } \epsilon = 4.28)$, 222 nm (log $\epsilon = 4.51$).

Support of this work by the National Institute of Health is gratefully acknowledged.

Received: April 18, 1974

Department of Chemistry, Temple University, Philadelphia, Penn-

A Regiospecific Synthesis of α -Methoxystilbenes

Grant R. Krow and Edward Michener

The synthesis of α -methoxystilbenes has been achieved by methoxy-bromination of stilbene with bromine in methanol followed by sodium methoxide elimination of hydrogen bromide¹. Unfortunately, this approach is unsuitable for regio-specific synthesis of α -methoxystilbenes from unsymmetrical stilbenes. We here report that, in hexamethylphosphoric triamide solvent, enolate anions of deoxybenzoins can be predominately θ -methylated using methyl fluorosulfonate² (Magic Methyl)³. By this procedure the first regiospecific synthesis of an α -methoxystilbene θ has been accomplished.

sylvania 19122, U.S.A.

The combosin of a methoxyerilbanes has been achieved by

¹ K. Tsujihara, K. Harada, N. Furukawa, S. Oae, *Tetrahedron* 27, 6101 (1971).

² J. B. Press, H. Schecter, Tetrahedron Lett. 1972, 2677.

³ Available from Aldrich Chemical Company.

⁴ G. Krow, E. Michener, unpublished work.