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tions using a large excess of cesium fluoride. 
tert-Butyl alcohol does not react with 1 even at 80 OC. Thus 

it makes an excellent solvent for solid alcohols. When 2,2- 
dimethyl-1,3-propanediol (4, 3.65 g) is dissolved in t-BuOH 
(20 ml) containing 10 equiv of CsF and 1 g of 2, a quantitative 
yield of 5 is obtained after 2 days. 
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Another feature of the general reaction is the formation of 
cyclic phosphates from diols. For example, if one starts with 
tris(trichloroethy1) phosphate (6)  and compound 4 (1 g of 6 
and 4.23 g of 4) in t-BuOH (20 ml) along with 10 equiv of CsF 
at room temperature, the cyclic phosphate (7) is obtained in 
95% yield. The remaining trichloroethyl group of 7 can be 
completely exchanged to give 8 by heating 7 at 80 OC in other 
alcohols (1 g of 7/20 ml) with cesium fluoride (5 equiv) for 2 
days. 
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As a final example, the exchange reaction occurs readily in 
nucleotide triesters where, for example, compound 9 is con- 
verted into 10 in 95% yield (100 mg of 8/10 ml of MeOH and 
30 equiv of CsF at room temperature for 2 days). 
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Thus the reaction described9 in this report is remarkably 
versatile and will benefit fields ranging from pesticides to 
phospholipids to nucleotides. 
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Conversion of Aminoglycosidic Antibiotics: Novel and 
Efficient Approaches to 3‘-Deoxyaminoglycosides via 
3’-Phosphoryl Esters 

Sir: 
Semisynthetic 3’-deoxyaminoglycosidic antibiotics, in- 

cluding 3’,4’-dideoxy derivatives, are remarkably effective 
against resistant strain bacteria producing phosphotransfer- 
ases.1,2 

We now report new, simple methods for the selective de- 
hydroxylation of aminoglycosides by a combination of enzy- 
matic and chemical reactions; the former is phosphorylation 
of aminoglycosides by using enzymes from resistant 
while the latter involves transformation of phosphates into 
3’-deoxyaminoglycosides by treatment with silylating agents 
and subsequent hydrogenation. The procedures present a 
conceptionally new and promising approach to modifications 
of polyfunctional antibiotics. Typical experimental procedures 
for the transformations are available; see paragraph at end of 
paper regarding supplementary material. 

Kanamycin B (1) was phosphorylated with the enzyme from 
Pseudomonas aeruginosa GN 5734 in the presence of ATP and 
MgS04 to its 3’-phosphate (2), mp 220-230 OC dec, [cU]D 
+106O ( c  0.5, HzO), in 99% yield.5 Reaction of 2 with tri- 
methylchlorosilane (TMCS)-hexamethyldisilazane (9:4 by 
volume) in a mixture of pyridine and HMPA in the presence 
of triphenylphosphine6 in a sealed tube (120 OC, 30 h) yielded 
after hydrolysis, 3’-chloro-3’-deoxykanamycin B (3), mp 
190-195 OC dec (from ClH50H), [ a ] D  +126O ( c  1.0, H2O). 
The chloride 3 was hydrogenated with Raney nickel in the 
presence of triethylamine in water to afford 3’-deoxykan- 
amycin B (4), identical with a natural product (tobramycin), 
in an overall yield of 47%,based on 2.237 Similarly, 3’-deoxy- 
neamine (6, ~ ~ e b r a m i n e ) , ~ ? ~  3’-deoxyxylostasin (9),8 mp 
134-135 OC dec (from CH@H), [ a ] D  +28O ( c  0.5, H20), 
3’-deo~yribostamycin,~ 3’-deoxyparomomycin I (lividomycin 
B),’O and 3’-deoxyneomycin B2 were obtained from the cor- 
responding aminoglycosides. The chlorination of butirosin A 
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3’-phosphate (1 1)” proceeded in lower yield, presumably 
owing to an undesired side reaction on the acyl moiety. Kan- 
amycin A 3’-phosphate1 possessing a hydroxy group at  the 
2’-position was recovered unchanged in the chlorination re- 
action. The equatorial configuration of the chlorine atom at 
the 3’-position was established on the basis of the proton- 
proton coupling constants observed in 3 and 3’-chloro-3‘- 
deoxyneamine (5) (J2’,3’ = 10 and 11 Hz, respectively). 

Another dehydroxylation procedure is the one involving 
aziridine derivatives. Treatment of 11 with bistrimethylsil- 
ylacetamide (BSA)-TMCS (5:l by volume) in pyridine in a 
sealed tube (105 OC, 30 h) afforded, after hydrolysis, 2’,3’- 
epimino-2’-deamino-3’-deoxybutirosin A (12), mp 2 12-214 
OC (from CH30H), [ a ] ~  +36O (c 0.5, HzO), in 58% yield with 
80% conversion of 11. The assigned structure for 12 was con- 
firmed by the comparison of I3C NMR spectra of butirosin A 
(10)l2 and 12. The signal of C-2’and C-3’ forming the aziri- 
dine ring in 12 appeared at the higher fieldI3 (chemical shifts 
for C-2’and C-3’: 33.7-34.9 ppm in 12; 56.4 and 74.0 ppm in 
10).14 Hydrogenation of 12 with Raney nickel in water at 70 
OC, followed by separation by ligand exchange chromatogra- 
phy15 (Amberlite CG-50, C U - N H ~  form) gave 3’-deoxybu- 
tirosin A (13), mp 204-208 OC (from CH30H), [ a ] ~  +22O 
(c 0.5, HzO), in 57% yield in preference to the isomer (product 
ratio, 5:l). The structure of 13 was confirmed by hydrolysis 
leading to 6 and 9. This method was successfully applied to 
3’-phosphates of 1, neamine,] xylostasin,16 and butirosin B17 
to obtain 4,6,9, and 3’-deoxybutirosin B,I8 respectively, via 
the corresponding 2’,3’-epiminoaminoglycosides. 
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3’-Chloro- and 2’,3’-epiminoaminoglycosides thus obtained 
are interconvertible. For example, 2’,3’-epimino-2’-deam- 
ino-3’-deoxyxylostasin (8) was converted into 3’-chloro-3’- 
deoxyxylostasin (7) in high yield under the chlorination con- 
dition, while treatment of 7 with BSA in pyridine in a sealed 
tube (1 20 O C ,  25 h) gave 8 in moderate yield.I9 

These results, together with the aforementioned observation 
obtained in both the substitutions (2 -+ 3,114 12), indicate 
that silylated epiminoglycosides are intermediates in the 
chlorination reaction. 
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any current masthead page. 
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Intrinsic Basicity Determination Using Metastable Ions 

Sir: 
We report a new method for the determination of intrinsic 

relative proton affinities. The procedure is sensitive to small 
differences in base strength and is simple in concept and in 
practice. It appears to be capable of generalization to the de- 
termination of affinities toward other ions. Present mass 
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