A SIMPLE CONVERSION OF N, N-DIMETHYL-2-ALKENYLAMINE TO 2-ALKENAL

Kunihiko TAKABE, * Takashi YAMADA, and Takao KATAGIRI Department of Synthetic Chemistry, Faculty of Engineering, Shizuoka University, Hamamatsu 432

Treatment of N,N-dimethy1-2-alkeny1amine with 30% H₂O₂ followed by acetic anhydride affords 2-alkenal (α,β -unsaturated aldehyde) in good isolated yield.

N,N-Dialky1-2-alkenylamines (1), which are easily prepared by the alkalimetal catalyzed telomerization of 1,3-diene with dialkylamine¹⁾, are useful intermediates in organic synthesis. Recently a variety of methods are available for the transformation of (1) into 2-alkenol,²⁾ 2-chloroalkene,³⁾ 2-alkenyl phenyl selenide⁴) and optically active enamine.⁵)

A simple, selective procedure for the conversion of (1) to 2-alkenal (α,β unsaturated aldehyde) (2) via the Polonovsky reaction⁶⁾ is presented here.

$${}^{1}{}^{R^{2}}C = CR^{3}CH_{2}NR_{2} \xrightarrow{1} {}^{H_{2}0_{2}} {}^{2} (CH_{3}CO)_{2}O \xrightarrow{1} {}^{R^{2}}R^{2}C = CR^{3}CHO$$
(1)
(2)

N,N-Dimethyl-2-alkenylamine (1) reacts with excess 30% H₂O₂ in methanol. Degradation of excess of H_2O_2 with PtO₂, and evaporation of the reaction mixture under reduced pressure (to remove H₂O and methanol) provides the corresponding amine oxide in quantitative yield. Conversion of the amine oxide to 2-alkenal (2) is conveniently achieved by adding acetic anhydride. Accordingly, the crude amine oxide is diluted with the solvent, and reacts with 1 - 3 mol. equiv. of acetic anhydride at room temperature. The reaction is clean and complete in less than 1 hr, providing 2-alkenal (2) in good isolated yield (56 - 76% yield based on the starting amine). The ratio of 2-(E)/2-(Z) of 2-alkenal obtained by this method depend extremely on the structure of the starting amines (1).

The results are summarized in Table.⁷⁾

Table Co	nversion o	of N,N-dimethy	y1-2-alkenylamine	(1)	to 2-alkenal (2)
----------	------------	----------------	-------------------	-----	------------------

$ \mathbb{R}^{1} \mathbb{R}^{2} \mathbb{C} = \mathbb{CR}^{3} \mathbb{CH}_{2} \mathbb{NR}_{2} \xrightarrow{\text{Step 1}} [\mathbb{R}^{1} \mathbb{R}^{2} \mathbb{C} = \mathbb{CR}^{3} \mathbb{CH}_{2} \mathbb{NR}_{2}] \xrightarrow{\text{Step 2}} \mathbb{R}^{1} \mathbb{R}^{2} \mathbb{C} = \mathbb{CR}^{3} \mathbb{CHO} $ (2)										
Step 1		Step 2 ^{b)}								
(1) (mmol)	^{30% H} 2 ⁰ 2 (m1)	CH ₃ OH (m1)	(CH ₃ CO) ₂ O (mmo1)	Solvent (ml)	(2) Yield(%) ^{C)} (2E/2Z)					
NMe (8)	2 8	15	25	Benzene 10	(70) (71/29)					
NMe ₂₍₃₀₎	5	15	90	Et ₂ 0 20	(76) (81/19)					
NMe ₂ (15)	5	15	45	Benzene 10	(67) (40/60)					
OH NMe2 ⁽¹⁰⁾	5	10	50	Benzene 5	OH (60) (51/49)					
NMe2 ⁽²³⁾	17	40	70	Benzene 10	(65) CHO					
NMe ₂ (30)	17	80	90	Et2020	CH0 (56)					

a) 24 h at room temp. b) 1 h at room temp. c) isolated yield

References

- K. Takabe, T. Katagiri, and J. Tanaka, Tetrahedron Lett., <u>1972</u>, 4009, idem., Bull. Chem. Soc. Jpn., <u>46</u>, 222 (1973).
- V. Rautenstrauch, Helv. Chim. Acta, <u>56</u>, 2492 (1973), K. Takabe, T. Katagiri, and J. Tanaka, Tetrahedron Lett., <u>1975</u>, 3005.
- 3) K. Takabe, T. Katagiri, and J. Tanaka, Chem. Lett., <u>1977</u>, 1025.
- 4) S. Murahashi and T. Yana, J. Am. Chem. Soc., 102, 2456 (1981).
- 5) K. Tani, T. Yamagata, S. Otsuka, S. Akutagawa, H. Kumobayashi, T. Taketomi,
 H. Takaya, A. Miyashita, and R. Noyori, J. Chem. Soc., Chem. Commun., <u>1982</u>,
 600.
- For a recent review; M. Ikeda and Y. Tamura, Yuki Gosei Kagaku Kyokai Shi, 38, 10 (1980) and references cited therein.
- 7) The structures of all compounds were verified by compatible spectral data.

(Received September 24, 1982)