Note

Synthesis of diastereoisomeric uridine 2',3'-tert-butylphosphonates

IRINA D. SHINGAROVA, STALINA YA. MELNIK, AND MARIA N. PREOBRAZHENSKAYA Cancer Research Center of the U.S.S.R. Academy of Medical Sciences, 115478 Moscow (U.S.S.R.) (Received March 25th, 1977; accepted for publication in revised form, November 21st, 1977)

2',3'-Adamant-1-ylphosphonates are formed by the reaction of adamant-1ylphosphonic dichloride with nucleosides and 5'-O-substituted derivatives¹⁻³. In further exploring this type of reaction, we have investigated the interaction of uridine (1) and its 5'-O-trityl derivative (4) with *tert*-butylphosphonic dichloride (2). Reaction of 1 and 2 in pyridine at 100° for 18 h gave 20% each of the diastereoisomeric uridine 2',3'-tert-butylphosphonates (3a and 3b). Likewise, 4 was converted into the diastereoisomeric 5'-O-trityluridine 2',3'-tert-butylphosphonates (5a, 55.4%; 5b, 30.6%). Detritylation of 5a and 5b with 90% trifluoroacetic acid furnished 3a (95%) and 3b (70%), respectively.

The mass spectra of 3a and 3b contained peaks for the molecular ion at m/e 346, and the fragmentation pathways were almost identical and compatible with the assigned structure. The p.m.r. data are given in Table I. The ${}^{3}J_{\rm HP}$ values confirm that the *tert*-butylphosphonate residue is located at positions 2' and 3'.

 $5b R = Tr, R^1 = t-Bu, R^2 = 0$

TABLE I

The configuration at phosphorus in 3a and 3b can be determined^{3,4} on the basis of the deshielding of H-2' and H-3' by a *cis*-related P=O group. Thus, the signals for H-2' and H-3' in 3b are at lower field than the corresponding signals in 3a.

Compound	$\delta (p.p.m.)^a$							
	H-6	H-5	H-1'	H-2'	H-3'	H-4′	H-5'	
 3a	7.74	5.67	6.03	5.40	5.10	4.28	3.74	1.26
3Ъ	7.74	5.68	5.94	5.48	5.24	4.23	3.72	1.33

P.M.R. DATA FOR SOLUTIONS OF 3a AND 3b IN Me_2SO-d_6 AT 100°

^aCoupling constants: 3a $J_{5,6}$ 8, $J_{1',2'}$ 2, $J_{2',3'}$ 7, $J_{3',4'}$ 4.5, $J_{4',5'}$ 4.2, $J_{5,6}$ 8, $J_{2',P}$ 7, $J_{3',P}$ 12.8, and J_{MeP} 17.4 Hz; 3b $J_{1',2'}$ 3, $J_{2',3'}$ 6, $J_{3',4'}$ 4.4, $J_{4',5'}$ 4.2, $J_{5,6}$ 8, $J_{2',P}$ 5.3, $J_{3',P}$ 6, and $J_{Me,P}$ 17.4 Hz.

EXPERIMENTAL

Solutions were concentrated under diminished pressure at 40°. T.l.c. was performed on Silufol UV-254 (Kavalier, Czechoslovakia), and p.l.c. on Silica Gel LSL_{254} (Chemapol, Czechoslovakia), with chloroform-methanol (A, 10:1; B, 20:1) and detection with u.v. light. Mass spectra were obtained with a Finnigan F-3020 spectrometer, and p.m.r. spectra (CDCl₃, internal Me₄Si) at 50° with a Varian XL-100 instrument.

2',3'-tert-Butylphosphonates (3a and 3b). — (a) To a solution of 5'-O-trityluridine⁵ (1 g) in anhydrous pyridine (15 ml), tert-butylphosphonic dichloride⁶ (2, 0.44 g) was added. The mixture was kept at 100° for 18 h, and then cooled and poured into ice-water with stirring. The solution was extracted with chloroform (4 × 50 ml), and the combined extracts were concentrated to dryness with the addition of toluene (3 × 20 ml). The residue was fractionated by t.l.c. (solvent A) to give 5a (0.67 g, 55.4%), R_F 0.32 (solvent B), and 5b (0.37 g, 30.6%), R_F 0.21 (solvent B).

Compound 5a had $[\alpha]_D^{20} + 7^\circ$ (c l, chloroform). N.m.r. data[•] δ 7–7.8 (H-6, Tr), 5.77 ($J_{1',2'} < 1$ Hz, H-1'), 5.59 ($J_{5,6}$ 8 Hz, H-5), 4.86–5.40 (H-2',3'), 4.52 (H-4'), 3.36–3.60 (H-5',5'), and 1.21 ($J_{H,P}$ 18 Hz, t-Bu).

Anal. Calc. for C₃₂H₃₃N₂O₇P·0.5CHCl₃: C, 60.25; H, 5.21; P, 4.78. Found: C, 59.52; H, 5.17; P, 4.76.

Compound **5b** had $[\alpha]_{D}^{20} - 5^{\circ}$ (c l, chloroform). N.m.r. data: δ 7–7.8 (H-6, Tr), 5.80 ($J_{1',2'}$ 2 Hz, H-1'), 5.52 ($J_{5,6}$ 8 Hz, H-5), 5.16–5.44 (H-2',3'), 4.27 (H-4'), 3.32–3.60 (H-5',5'), and 1.30 ($J_{H,P}$ 18 Hz, t-Bu).

Anal. Found: C, 60.79; H, 5.38; P, 4.96.

Compound 5a (0.64 g) was treated with 90% trifluoroacetic acid (1.6 ml) at 20-22° for 5 min. After the evaporation of the solvent, the residue was purified by t.l.c. (solvent A) to give 3a (0.35 g, 95%), $R_F 0.58$, $[\alpha]_D^{20} - 16^\circ$ (c 1, methanol). Mass spectrum: m/e 346 (M⁺), 315 (M-CH₂OH)⁺, 235 (M-B)⁺, 217 (M-B-H₂O)⁺,

179 $(M - CH_2OH - BuPO_3)^+$, 139 $(BuPO_3H_3)^+$, 113 $(B+2H)^+$, 112 $(B+H)^+$, and 57 $(Bu)^+$.

Anal. Calc. for C₁₃H₁₉N₂O₇P·0.2CHCl₃: C, 42.83; H, 5.23; P, 8.37. Found: C, 42.93; H, 5.30; P, 8.79.

Likewise, 5b gave 3b (70%), $R_F 0.38$ (solvent A), $[\alpha]_D -22^\circ$ (c 1, methanol). Mass spectrum: m/e 346 (M)⁺, 315 (M-CH₂OH)⁺, 235 (M-B)⁺, 217 (M-B-H₂O)⁺, 179 (M-CH₂OH-BuPO₃H₃)⁺, 113 (B+2H)⁺, 112 (B+H)⁺, and 57 (Bu)⁺.

Anal. Calc. for C₁₃H₁₉N₂O₇P·0.5CHCl₃: C, 39.94; H, 4.84; P, 7.63. Found: C, 40.02; H, 5.00; P, 7.34.

(b) To a solution of uridine (1, 0.5 g) in anhydrous pyridine (8 ml) was added 2 (0.43 g). The resulting mixture was kept at 100° for 18 h. The solvent was evaporated with the addition of toluene $(3 \times 20 \text{ ml})$, and the residue was fractionated by t.l.c. (solvent B) to give 3a (0.14 g, 19.7%), 3b (0.14 g, 19.7%), and 1 (0.23 g, 46%).

ACKNOWLEDGMENT

The authors are indebted to Dr. I. V. Yartzeva for discussion of the p.m.r. data.

REFERENCES

- 1 M. N. PREOBRAZHENSKAYA, S. YA. MELNIK, D. M. OLEINIK, T. P. NEDOREZOVA, K. F. TURCHIN, E. S. SHEPELEVA, AND P. I. SANIN, J. Carbohydr. Nucleos. Nucleot., 2 (1975) 413-418.
- 2 S. YA. MELNIK, T. P. NEDOREZOVA, AND M. N. PREOBRAZHENSKAYA, J. Carbohydr. Nucleos. Nucleot., 3 (1976) 129-147.
- 3 M. N. PREOBRAZHENSKAYA, S. YA. MELNIK, T. P. NEDOREZOVA, I. D. SHINGAROVA, AND D. M. OLEINIK, in R. HARMON (Ed.), *Chemistry and Biochemistry of Nucleosides and Nucleotides*, Academic Press, New York, 1978, in press.
- 4 W. G. BENTRUDE AND H.-W. TAN, J. Am. Chem. Soc., 98 (1976) 1850-1859.
- 5 R. S. TIPSON, in W. W. ZORBACH AND R. S. TIPSON (Eds.), Synthetic Procedures in Nucleic Acid Chemistry, Vol. 1, Wiley-Interscience, New York, 1968, pp. 441-442.
- 6 A. M. KINNER AND E. A. PERREN, J. Chem. Soc., (1952) 3437-3445.