J.C.S. Снем. Сомм., 1972

## The Reactions of Copper(1) Phenylacetylide with Nitrones

By MANABU KINUGASA\* and SHIZUNOBU HASHIMOTO

(Department of Applied Chemistry, Doshisha University, Karasuma-imadegawa, Kamikyo-ku, Kyoto, Japan)

Summary Reactions of copper(1) phenylacetylide with nitrones give cis- $\beta$ -lactams.

WE have investigated the reactions of copper acetylides with 1,3-dipoles,<sup>1</sup> and have found that with nitrones  $\beta$ -lactams are formed.

The reactions of copper(I) phenylacetylide (1) with nitrones (2a—d) were performed in dry pyridine under a nitrogen atmosphere. After hydrolysis,  $\beta$ -lactams (3a—d) were obtained in good yield.

The structures of (3a-d) were confirmed by n.m.r. and i.r. spectra. Yields and physical data of (3a-d) are given in the Table.

The configurations of (3a) and (3c) were shown to be *cis* from the following information. (3a) had m.p. and i.r., n.m.r., and mass spectra in agreement with those of a *cis*- $\beta$ -lactam described in the literature.<sup>2</sup> It has been reported that the  $\beta$ -lactam produced from the reaction of N-(o-methylbenzylidene)aniline with phenylketen, the isomer of (3c), has a m.p. of  $138^{\circ}$ ,<sup>3</sup> and its configuration was shown



to be *trans* since the addition of a keten to an imine always gave a *trans*- $\beta$ -lactam.<sup>4</sup> Therefore, (3c), with m.p. 213—

214°, was deduced to exist in the *cis* form. It is possible that (3b) and (3d) formed in the same reaction, *i.e.*, "the

## Yields and physical data of cis- $\beta$ -lactams (3a-d)

| Lactam <sup>a</sup> | Yield<br>(%) | M.p.<br>(°C)                  | $\nu(C=O)$<br>(Nujol)          | HA                          | δ (CDCl <sub>s</sub> )<br>H <sub>B</sub> | <i>J</i> ав (Нz)          |
|---------------------|--------------|-------------------------------|--------------------------------|-----------------------------|------------------------------------------|---------------------------|
| (3a)                | 54.5         | 186<br>(182—183) <sup>b</sup> | 1750<br>(5·73 μm) <sup>b</sup> | 4·95<br>(4·96) <sup>b</sup> | 5·43<br>(5·44) <sup>b</sup>              | 6·5<br>(7·0) <sup>b</sup> |
| ( <b>3b</b> )       | 60.2         | 156                           | 1750                           | <b>`4·30</b> ′              | <b>`4</b> •95 <sup>′</sup>               | 3.0                       |
| ( <b>3c</b> )       | 50.6         | 213 - 214                     | 1740                           | 4.20                        | 5.25                                     | $3 \cdot 0$               |
| ( <b>3</b> ď)       | 51.2         | 190—192                       | 1745                           | 5.00                        | 5.75                                     | 6.3                       |

\* Satisfactory analytical data were obtained on all  $\beta$ -lactams. b Values from ref. 2 are in parenthesis.

acetylide reaction," prefer the cis form. Also, the trans isomers of (3b) and (3d) have not been prepared by "the keten reaction."3

Although  $\beta$ -lactams have been synthesized in various ways,<sup>5</sup> no reaction giving only a  $cis-\beta$ -lactam has yet been reported. Hence, "the acetylide reaction" is useful as a stereoselective reaction and for the synthesis of  $cis-\beta$ lactams.

(Received, 24th February 1972; Com. 303.)

<sup>1</sup> S. Hashimoto, W. Koike, and M. Kinugasa, Abstracts 24th Annual Meeting of the Chemical Society, Japan, No. 3, 1971, p. 1721.
<sup>2</sup> O. L. Chapman and W. R. Adams, J. Amer. Chem. Soc., 1968, 90, 2333.
<sup>8</sup> R. Pfleger and A. Jöger, Chem. Ber., 1957, 90, 2460.
<sup>4</sup> A. K. Bose, G. Spiegelmann, and M. S. Manhas, Tetrahedron Letters, 1971, 3167.
<sup>5</sup> L. L. Muller and J. Hamer, '1,2-Cycloaddition Reactions,' Wiley, New York, 1967, p. 173, and references therein.