142 Chattaway and Irving: 2:4:6-Trichloroaniline.

44. 2:4:6-Trichloroaniline.

By F. D. CHATTAWAY and HARRY IRVING.

THE preparation of 2:4:6-trichloroaniline in any quantity is difficult and no really satisfactory procedure has been described. The difficulty is due to the circumstance that, in the presence of even a small quantity of water, the amino-group is displaced by hydroxyl; if the chlorination be prolonged, octachlorohexenone is finally obtained.

When moisture is carefully excluded, the chlorination of a suspension of 2:4-dichloroaniline hydrochloride in dry chloroform gives a practically quantitative yield of 2:4:6-trichloroaniline; 80% of the theoretical amount may similarly be obtained by starting with aniline hydrochloride.

2:4:6-Trichloroaniline forms a well-crystallised crimson *picrate* and a colourless *phthalanil* and N-*dichloroacetyl* derivative. 2:4:6-Trichloroacetanilide, m. p. 207—208°, yields 2:4:6-trichlorodiacetanilide, m. p. 80·5—81·5°, when heated with an excess of acetic anhydride.

The substance obtained by Fels (Z. Kryst., 1903, 37, 465) and considered by him to be a molecular compound, $xC_6H_2Cl_3\cdot NH_2$, $yCH_3\cdot COCl$ (although no analysis is given), appears to have been 2:4:6-trichlorodiacetanilide, since its m. p., given as 80—81°, and its crystallographic constants agree closely with those of this compound. In repeating Fels's work, under a wide range of experimental conditions we have always obtained only 2:4:6trichloroacetanilide.

Similarly, the "molecular compound" of acetyl chloride and 2:4:6-tribromoaniline, m. p. $128\cdot5$ — $129\cdot5^{\circ}$, described by Fels (*loc. cit.*) appears to be in reality 2:4:6-tribromodiacetanilide; the variations in crystal habit reported by Fels have not been observed.

Preparation of 2:4:6-Trichloroaniline.—A solution of 50 g. of aniline in 750 c.c. of $CHCl_3$ (free from EtOH and dried over $CaCl_2$) was saturated with dry HCl, moisture being carefully excluded. Through the suspension of aniline hydrochloride formed, a stream of Cl was passed, the temp. being maintained between 0° and 10°. When Cl was no longer absorbed, the excess of halogen was removed by aspirating dry air through the mixture, the colourless suspension of 2:4:6-trichloroaniline hydrochloride freed from $CHCl_3$ with the aid of a pump, and the base itself obtained by crystn. from EtOH. The 2:4:6-trichloroaniline may if necessary be further purified by converting it into its monoacetyl derivative and hydrolysing this by suspending it in

The Stereoisomeric 2:3:5:6-Tetramethylpiperazines. Part IV. 143

 H_4O (6 parts by wt.) and adding conc. H_2SO_4 (18 parts) rapidly with very vigorous stirring. The temp. rises to 130—140° and the solution becomes clear. When the cold liquid is poured over twice its wt. of ice, pure trichloroaniline separates as a colourless flocculent solid.

2:4:6-Trichlorophthalanil, obtained from trichloroaniline (1 mol.) and phthalic anhydride (1 mol.) at 150° (30 min.), separated from boiling EtOH (moderately sol.) in colourless pearly leaflets, m. p. 175–176° (Found : Cl, 32.8. $C_{14}H_{6}O_{3}NCl_{3}$ requires Cl, 32.6%).

2:4:6-Trichloroanilinium picrate, obtained from trichloroaniline and picric acid (eq. mol.) in warm EtOH, crystallised from boiling EtOH (very readily sol.) in fine, deep crimson prisms, m. p. $81\cdot5-82\cdot5^{\circ}$, which develop a green shade on keeping (Found : Cl, $25\cdot15$. C₁₈H₇O₇N₄Cl₃ requires Cl, $25\cdot0^{\circ}$).

2:4:6-Trichlorodichloroacetanilide, $C_6H_2Cl_3\cdot NH\cdot CO\cdot CHCl_2$, obtained by refluxing the trichloroaniline with a slight excess of dichloroacetyl chloride at 170° for 15 min., crystallised from boiling EtOH (moderately sol.) in very slender, colourless prisms, m. p. 184—184.5° (Found : Cl, 57.35. $C_8H_4ONCl_5$ requires Cl, 57.7%).

2:4:6-Trichlorodiacetanilide, $C_6H_2Cl_3\cdot NAc_2$, prepared by refluxing the trichloroaniline (4 g.), Ac_2O (5 c.c.), and conc. H_2SO_4 (3 drops) for 4 hr. and pouring the mixture into H_2O , crystallised from EtOH or acetone, in which it is very sol., in small compact prisms, m. p. 81–82° (Found : Cl, 38·0. $C_{10}H_8O_2NCl_3$ requires Cl, 38·0%).

Measurements of selected crystals (from acetone at room temp.) showed that the forms a (100), b (010), l (110), m (1 $\overline{1}$ 0), n (1 $\overline{2}$ 0), r (101), and q (011) were represented. The identity of this 2:4:6-trichlorodiacetanilide with Fels's alleged molecular compound is shown by comparing the corresponding interfacial angles :

Angle.	Fels's cmpd.	C ₄ H ₂ Cl ₃ ·NAc ₂ .	Angle.	Fels's cmpd.	C _s H _s Cl _s ·NAc _s .	Angle.	Fels's cmpd.	C,H,Cl,·NAc,.
bl Ia	$42^{\circ} 5\frac{1}{29}^{\circ} 42\frac{1}{29}^{\circ}$	42° 7 1 ′	qr ra	34° 10′ 54° 59′	34°10′ 54°41′	qa qb	80° 50′ 59° 27′	80° 53′ 59° 43′
am mn	42° $1\frac{1}{2}^{\prime}$ 26° $32\frac{1}{2}^{\prime}$		rm rn	67° 18′ 81° 7′	67° 36 <u>1</u> ′ 81° 20′	ql	67° 41½'	68° 16'

THE QUEEN'S COLLEGE, OXFORD.

[Received, January 23rd, 1933.]