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T H R E E - D I M E N S I O N A L  C O M P U T E R  M O D E L I N G  O F  F R A C T U R E  S U R F A C E S  
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In fracture mechanics, the analysis of  fracture surfaces is based on the digital photogrammetric processing of  
images obtained with the help of  a scanning electron microscope [1, 2]. 

In three-dimensional fractography, it is customary to compare the prof'flometric data of regular surfaces (cubic, 
conic, or spherical). However,  the accuracy of  this procedure is quite low due to the fact that the geometric approxi- 
mations are not identical. These arguments enable us to make important generalizations. 

1. Let h = Q ( x )  be an a priori  unknown function reflecting the dependence of  the relative height of  the in- 
vestigated surface as a function of  the abscissa in the stereoscopic image obtained with the help of  a scanning elec- 

tron microscope. As soon as the heights hs at the points xs are determined, it is necessary to estimate the function 

Q for a known collection of pairs { (Xs, hs): 0 __. S < S - 1 }. This problem is stated as the problem of extrapolation 

of  a function of  two variables known for a finite set of  points. To solve it, we represent the micropattern regarded as 
a random field in the form of a sum of cylindrical components. Indeed, let 

T-1 

Q(x)  = E Qj(x), Qj(x)  = Cj(XlCOSOl j + x2sin(z]), (1) 
j=o 

where x I and x 2 are the coordinates of  the point x and Cj(t)  are apr ior i  unknown functions of single variable 

a j  = =j-r  -* (0 _< z < z -  1). 

Also let 

tjs = (x~S) c o s a j  + x(S)s inaj ) ,  

where x[ s) and x(2 s) are the coordinates of  x s (0 < s < s - 1 ). 

Suppose that the functions Cj( t )  are piecewise linear in the segments from T(j ,  k)  to T(j ,  k + 1) (0 < s _< s 

- 2). We denote the slopes of these se~m'nents by uj, k+ 1 .. Then 

C j ( T ( j ,  k))  = uj. o + 
k-1  

E [T(j ,  m + 1) - T(j ,  m)] Uj, m+ 1, 
m=0 

(3) 

where uj. o is the initial value of Cj( t )  and qs = hs (0 < s < s - 1 ). By definition, we can write 

qs = Uj, o + E [T(j ,  ra + 1) - T(j ,  m)]Uj, m+ 1 . (4) 
j=o 
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Fig. 1. Digital model of a micropattem of the fracture surface plotted by the method of extrapolation of the data of stereoscopic measure- 
ments in scanning electron microscopy. 
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Fig .  2.  Perspective projection of a stepwise brittle-fracture surface. 
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In this statement, the problem of extrapolation is reduced to the choice of variables uj, k (0  < j < "C - 1, 0 < k < 

s - 1 ) satisfying the linear equations (3). Since this choice is ambiguous and we want to guarantee the maximum 
possible smoothness of the surface of approximation, it is reasonable to perform the choice of the variables uj. k by 

the method of least squares minimizing the quadratic functional of "action" 

~-1 s - 2  

w : X X  
j=o k=o 

uLk+l[T(j ,  k + 1) - T( j ,  k)] (5) 

under given linear restrictions imposed on the choice of variables. 

Moreover, to take into account the errors accumulated in measuring heights h s, it is reasonable to minimize the 

quadratic functional 

s - 2  

+ w + T  Z 2 = Uj, k+l ,  (6) 
k=0 

where T > 0 is a parameter taking into account the accuracy of measuring h s and uj, i, are the measurement errors 

of h s , The  origin of coordinates where the relative height is known and equal to zero corresponds to s = 0 in the 

list { xs" O < s < s -  l }. 

2. As an important specific feature of the proposed method (two examples of its practical realization are pre- 
sented in Figs. 1 and 2), one can mention the possibility of its application to the quantitative evaluation of three-di- 
mensional roughness and angular distribution of the fracture faces. If, as a result of extrapolation, the space coordi- 
nates of points of the surface are sufficiently close to each other, then we can construct a triangular net in which 
every triangle corresponding to a fracture face is specified by two neighboring points of the surface determined by 

the coordinates of the same x -  z profile (y is constant) and the proximate point of the next profile. Thus, for a pro- 

file measured in the direction y, two pairs y - z  of the y-profile are combined with a single point of the next profile. 
For this choice of points, the computer software enables us to find the area of the fracture surface and the slopes of 

the facets (faces) relative to the direction of stresses (e.g., the z (cx:)-axis), to the direction of crack propagation (the 

x(c%)-axis), or to the direction normal to these two axes (the y(Cty)-axis). The entire area of the fracture surface S 

is estimated by adding the areas of all triangles (Xi,j, i.e., 

= Z (Xi, j" (7) 
i , j  

We can also find the area of a three-dimensional irregular fracture surface according to the density of vectors. 

The estimate of the actual fracture surface obtained by this method is denoted by S" and we can write [3-5] 

S' = ~ 5  {PL[O01 ] .  + PL[OIO] + PL[IO0] + PL[Oll] + PL[IO1] + PL[IIO] + Pr.[llO] + PL[1TO] 

+ PL[IO1] + ff-~(PL[lll] + PL[Tl l ]  + P L [ l l l ]  + PL[TTI])}, (8) 

where A.' is the area of the surface projected in the direction z onto the plane corresponding to the actual area of 

the domain covered with x - y  data points in a noninclined micrograph made with a scanning electron microscope 

and PL[001 ] is the density of vectors normal to the fracture surface (in the direction z). For all other Pc, the in- 

terpretation is similar. 
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The values of S'  obtained as indicated above are somewhat lower than the values computed by using triangular 
faces. This is a result of smoothing of the roughness of the fracture surface in both directions in the procedure used 

to obtain S'. At the same time, in the case of S, only one direction is smoothed. It is thus obvious that the actual 

area of the surface S is geater. By performing simple corrections of smoothing at the equidistant points of the ini- 

tial data, we can estimate the deviation of S (one smoothing) from S (no smoothing) according to the difference 

between S' and S. Thus, we obtain the corrected empirical estimate S c of the actual area of the surface S in the 
form 

One can avoid the procedure of smoothing based on the use of equidistant profiles and proper collections of 
points. To do this, it is necessary to measure the coordinates of angles of the actual fracture faces or to use profiles 
distributed with sufficiently high densities. 

3. It is known [6, 7] that the roughness of the surface Rs-can-hedefmed-as-the ratio of the actual area of the 

fracture surface S to the area A~ of its projection onto the fracture plane, namely, 

S 
Rs = -7;. (9) 

A- 

It is clear that Rg and R s, obtained by using S and S'  are different. This difference is also caused by the 

procedure of smoothing. However, in this case, we can also find the actual values of these quantities by using the 
same correction as for the actual surface, i.e., 

RC S c (10) 
= A-- = RS Rs ,.  

This means that, according to the data of estimates of the actual area of the surface, we can determine the cor- 
rected roughness of the surface free of measurement errors and smoothing. Below, we present some results of the 
practical evaluation of the surface roughness according to the data of stereoscopic measurements. 

R~ ] 1.50; 1.45 1.90; 1.87 

R s, 1.20; 1.18 1.48; 1.42 

A 0.30; 0.27 0.32; 0.45 

4. We now clarify the agreement between the results of construction of a digital model of micropattern of the 
stepwise surfaces and the data of measurements carried our for arbitrary fracture surfaces. To this end, we use the 
theorem well-known in the profilometry of fracture surfaces according to which "the fracture surfaces with the same 

degees  of roughness (K A ) have almost equal profde indices of roughness (Kpy [1, 6]. For the "ideal" stepwise 

fracture surface, we obtain the following general relationship between the mean characteristics of the roughness pro- 

file K e and the corresponding indices of roughness of individual segments [6]: 

I _ 4 ~ (-I)n(__2-KA) n 

+ i T K - U  " 
(11) 
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If  we now rewrite relations (11) in the form of a finite series, then, after simple transformations, we obtain 

1 _ 4 [  1 2 - K  A ( 2 - K A )  2 ( 2 - K A )  3 ]  (12) 

The analysis of  this relation shows that if  K a = 2, which corresponds to the surface of  a random field of  

heights with arbitrary distribution of steepness and Gaussian curvature, then the distribution of orientations of ele- 
ments of the surface and local curvature of some parts of the fracture surface do not affect the unambiguity of  corre- 

lation between K A and Kp. This result can be interpreted as follows: If  we assume that the f'trst term in relation 
(12) takes into account the irregularity of  the surface curvature, then the higher-order terms can be regarded as cor- 

rections for the deviations of the analyzed surface from the arbitrary fracture surface. Note that if  K A = 1, which 

corresponds to a "perfectly plane fracture surface," then K e = 1. The results of numerical calculations demonstrate 

that, for the values of K A important for the purposes of fractography, these deviations do not exceed 2 -3%,  which 

is, in fact, inessential. 

Thus, the application of three-dimensional computer modeling enables one to obtain the reliable three-dimen- 
sional quantitative characteristics of specific features of the fracture surfaces and the spatial distribution of facets in 
these surfaces as well as correct estimates of their roughness. 
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