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α,β-Acetylenic ketones are widely used in organic synthesisas 
starting reagents for the preparation of indenones,1,2 
benzodiazepines,3 chromones,4,5 frutinones,6 pyrazoles,7 and 
phosphonylated indenones8 (Scheme 1). 

α,β-Acetylenic ketones can be prepared by the Sonogashira 
coupling of terminal acetylenes and acyl halides; however, this 
reaction requires an expensive palladium catalyst,9-11 or 
sophisticated mesoporous silicates.12 To date, the most frequently 
used approaches for the synthesis of acetylenic ketones are based 
on the reaction of metal acetylides with acyl chlorides. It should 
be noted that the nature of the organometallic reagent strongly 
affects the reaction conditions and the yields of the target 
ketones, as well as by-product formation (for details, see 
review13). Another important factor worth considering is the so-
called E-factor, which is defined as the mass ratio of waste to 
desired product.14 From this point of view, lithium, sodium, and 
potassium acetylides are among the most attractive 
organometallic reagents for the synthesis of functionalized 
acetylenes. However, due to their high reactivity with acyl 
halides, this reaction is difficult to control and cannot be stopped 
precisely at the stage of alkynyl ketone formation. Special 
interest has been given to trialkyltin acetylides (Alk3Sn-C≡C-R), 
since these mild reagents are tolerant towards a number of 
functional groups and react smoothly in the presence of Pd 
catalysts to give functionalized acetylenes in high yields.15-21 No 
catalyst is required when more active acyl iodides are used.22 
However, the high molecular weight, and hence the high E-factor 
of the trialkyltin species, make the use of these acetylides 
unattractive for both laboratory and large-scale synthesis.  

Scheme 1. Selected reactions of alkynyl ketones 

Another problem with the use of trialkyltin reagents is the high 
toxicity. Nevertheless, despite these drawbacks, organostannanes 
are utilised as effective and atom economical reagents for various 
alkynylation reactions. 

The solution came with the replacement of 
monoalkynylstannanes with tetraalkynyltin reagents (R-C≡C)4Sn. 
The advantages of tetraalkynylstannanes are low toxicity (since 
Sn–C(sp) bonds tend to readily hydrolyze even with atmospheric 
moisture to give only the corresponding inorganic tin species) 
and the low molecular weight of the tin residue. Thus, in contrast 
to trialkyltin reagents (e.g. frequently used tributyltin derivatives 
bearing the Bu3Sn residue with a molecular weight of 290), 
tetraalkynyltin reagents are more effective, discarding only tin 
atoms as waste (the molecular weight is about 30 Da per 
acetylide unit), and hence could be compared with alkali metal 
acetylides in terms of atom economy. It should be noted that 
alkynyltin trichlorides could also be used as a less toxic 
alternative to trialkyltin reagents. However, alkynyltin 
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trichlorides cannot be considered as atom-economical reagents, 

and react with acyl chlorides to give acetylenic ketones in only 
moderate yields (21-63%).23 

It is noteworthy that for tetraorganyltin compounds, only a 
few reactions are known to involve all four substituents at the tin 
atom. Thus, the reactions of tetraallylstannanes with imines,24 
aldehydes or ketones,25–27 as well as other electrophiles26 have 
been described. Recently, we reported the Stille-type coupling 
reaction of tetraalkynylstannanes with aryl halides leading to aryl 
acetylenes and SnHal4,

28 and aldehydes leading to alkynyl 
ketones.29,30 It was briefly mentioned by Neumann and Kleiner31 
that the reaction of a tetraalkynylstannane with acetyl chloride 
gave an acetylenic ketone in only 50% yield. In our opinion, the 
reaction scope of tetraalkynylstannanes as nucleophilic agents 
remains limited, despite tetraalkynyltin reagents being easily 
available by the direct alkynylation of either SnCl4

32 or tin 
tetra(N,N-diethylcarbamate).33 

Herein, we report an effective and time-saving protocol for the 
synthesis of acetylenic ketones via the reaction of 
tetraalkynylstannanes 1 with acyl chlorides 2. This reaction starts 
easily in the presence of Lewis acid catalysts and is autocatalytic 
(Scheme 2). The presence of tin tetrachloride, which is formed in 
the reaction, accelerates the acylation process but also leads to 
some resinification of the acetylenic ketone 3. The nature of the 
solvent also exerts a significant influence – thus, the use of 1,4-
dioxane, which forms a complex with tin tetrachloride,34 leads to 
lower acidity and decreases side-reactions to some extent. 

 

Scheme 2. Reaction of tetraalkynylstannanes 1 with 
acyl chlorides 2. 

 

The effects of solvent and catalyst loading on the yield of 
acetylenic ketone 3aa in the model reaction of stannane 1a with 
benzoyl chloride 2a is shown in the Table 1. The use of increased 

catalyst loading accelerates the reaction but also lowers the yield 
due to by-product formation. Tetraalkynylstannane 1a did not 
react with benzoyl chloride below 80 °C. Meanwhile, the yield of 
ketone 3aa tended to decrease with further temperature increases. 
The use of ZnCl2 as a catalyst was found to be optimal, giving 
the highest product yields. The reaction did not proceed in the 
presence of basic catalysts. Another important factor that 
influences the reaction process is the reactant concentration. 
Thus, when the concentration of benzoyl chloride 2a was 
doubled (increased from 1.39 mmol/mL to 2.78 mmol/mL), the 
yield of the target ketone 3aa increased significantly, despite the 
reaction mixture becoming thick as the reaction reached 
completion due to the formation of a complex between SnCl4 and 
1,4-dioxane. The formation of a thick slurry was taken to indicate 
that the reaction had proceeded to completion.  

Figure 1. Scope of stannanes 1 and acyl chlorides 2  

The various tetraalkynylstannanes 1 and acyl chlorides 2 
explored for this reaction are shown in Figure 1. In order to avoid 
hydrolysis, all of the reactions were conducted in dry solvents 
under an argon atmosphere. The preparative yields of the alkynyl 
ketones 3 are shown in Table 2. Lipophillic acid chlorides were 
noticeably more active in this reaction than aromatic acid 
chlorides. Thus, the reaction of tetraalkynylstannane 1a with 
acetyl chloride 2c was complete within 30 min even at 40 °C, 
affording acetylenic ketone 3ac in 99% isolated yield.  

 

Table 1. Effect of solvent, catalyst and reaction time on the model reaction of tetraalkynylstannane 1a with benzoyl chloride 2a
a  

Solvent Catalyst (mol%) T (°C) Time (h) Yield 3aa (%)c 

THF - 66 6 no reaction 

PhMe - 100 10 32 

DCE - 80 5 64 

DCE ZnCl2 (10) 80 1 60 

1,4-dioxane - 80 5 4 

1,4-dioxane - 100 5 66 

1,4-dioxane ZnCl2 (10) 100 1.5 66 

1,4-dioxane ZnCl2 (10) 80 3 79 

1,4-dioxane ZnCl2 (10) 80 3 98b 

1,4-dioxane ZnCl2 (10) 60 3.5 no reaction 

1,4-dioxane ZnCl2 (50) 80 3.5 63 

1,4-dioxane ZnCl2 (100) 80 2 57 

1,4-dioxane ZnBr2 (10) 80 3.5 64 

1,4-dioxane Zn(CF3SO3)2 (10) 80 1 61 

1,4-dioxane Et3N (100) 100 4 no reaction 

1,4-dioxane Pyridine (100) 80 2 no reaction 

aReagents and conditions: (Ph-C≡C)4Sn 1a (0.55 mmol), benzoyl chloride 2a (2.0 mmol), catalyst, solvent (1.44 mL); b1,4-dioxane (0.72 mL). cYields 
determined by GC-MS by the ratio of starting material to product. 
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Table 2. Examination of the reaction scope.a 

 

Alkynyl ketones 3 R R’ T (°C) Time (min) Yield (%)b 

3aa Ph Ph 80 150 67 

3ab Ph 4-t-BuC6H4 80 75 80 

3ag Ph 3-MeOC6H4 80 100 66 

3bb 4-MeC6H4 4-t-BuC6H4 80 60 63 

3ac Ph Me 40 30 99 

3ad Ph Pr 60 10 81 

3ae Ph i-Pr 60 20 78 

3af Ph CH3(CH2)14 60 30 95 

3bc 4-MeC6H4 Me 40 20 87 

3dc Bu Me 40 30 74 

3bd 4-MeC6H4 Pr 60 10 88 

3ce 4-ClC6H4 i-Pr 60 10 85 

3cf 4-ClC6H4 CH3(CH2)14 60 30 89 

aReagents and conditions: (RC≡C)4Sn 1a (0.55 mmol), R'C(O)Cl 2a (2.0 mmol), ZnCl2 (0.2 mmol), 1,4-dioxane (0.72 mL). bIsolated yield. 

The reaction of stannanes 1 with other lipophillic acid 
chlorides required heating at 60 °C; the reaction was complete 
within 10-30 minutes, furnishing acetylenic ketones 3a-x in good 
yields (78-95%). It should be noted that long-chain lipophillic 
acid chlorides also reacted well to give the corresponding long-
chain ketones in high yields (see Table 2 and ESI, Table 1). 

In summary, we have proposed a new, fast and atom-
economical method for the preparation of α-acetylenic ketones, 
starting from mild nucleophilic reagents – tetraalkynylstannanes.  
The method is suitable for the synthesis of long-chain acetylenic 
ketones. 
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Highlights 

• An atom-economical method for the 
preparation of   α,β-acetylenic 
ketones from tetraalkynylstannanes. 

• The reaction starts in the presence of 
Lewis acid catalysts and is 
autocatalytic. 

• The method is suitable for the 
synthesis of long-chain acetylenic 
ketones. 

 
 


