128. Die Glykoside von Vincetoxicum hirundinaria MEDIKUS¹)

1. Mitteilung: Isolierungen und Spaltprodukte

Glykoside und Aglykone, 316. Mitteilung²)

von K. Stöckel, W. Stöcklin und T. Reichstein

Institut für Organische Chemie der Universität Basel

(7. V. 69)

Summary. The dried roots of Vincetoxicum hirundinaria Medikus, collected in the lake of Garda area, yielded ca. 6% of a crude glycoside mixture, of which 5,16% consisted of relatively weakly polar material. After mild acid hydrolysis of the latter, 7 sugars could be identified through paper and thin layer chromatography, and paper electrophoresis. Of these p-cymarose, L-diginose, p-digitoxose, and a small amount of lilacinobiose could be isolated in crystalline form. Of the other three sugars, p-oleandrose was characterised as a crystalline derivative, whereas boivinose and canarose could only be identified through paper and thin layer chromatography, and paper electrophoresis.

Four crystalline genins (B, D, E, G) and a glycoside (F) were isolated from the genin extract. Of these, D was very unstable and therefore thus was not further investigated. B, E, and F were shown to be 15-oxasteroids, a type of steroids so far not found in nature. Very probably, G also represents a 15-oxasteroid. The four substances B, E, G, and F were given the following trivial names: B = anhydrohirundigenin, E = hirundigenin, G = vincetogenin, and F = hirundoside-A. F is an oleandroside of anhydrohirundigenin. The structures of hirundigenin and anhydrohirundigenin have already been elucidated [35].

1. Einleitung. – Der Schwalbenwurz, Vincetoxicum hirundinaria Medikus (= V. officinale Mönch = Cynanchum vincetoxicum (L.) Pers.) ist die einzige in Mitteleuropa heimische Asclepiadacee; sie ist auch in der Schweiz verbreitet [2]. Über die korrekte lateinische Benennung besteht keine Einigkeit. Die von Fuchs [3] vorgebrachten Argumente, wonach die Pflanze als Alexitoxicum Vincetoxicum (L.) H. P. Fuchs bezeichnet werden soll, scheinen den meisten Taxonomen nicht begründet, vgl. Ross [4]. Nach Privatmitteilung von Bullock (in lit. 6. 6. 1966)³) ist der Name Cynanchum vincetoxicum (L.) Pers. richtig, wenn man die Pflanze in die Gattung Cynanchum einreihen will. Zieht man es jedoch vor, Vincetoxicum als eigene Gattung abzutrennen, was ihm zweckmässig scheint, so wäre sie nach den geltenden Regeln [5] als Vincetoxicum hirundinaria Medikus zu bezeichnen. Wir verwenden daher auch hier diesen Namen.

Vincetoxicum hirundinaria ist eine ausserordentlich formenreiche Art, deren Gliederung verschiedentlich versucht [2] [6–8], aber bis heute noch nicht erfolgreich durchgeführt worden ist. Es ist daher durchaus möglich, dass die verschiedenen Sippen teilweise auch chemisch verschiedene Stoffe produzieren. Vincetoxicum war früher eine beliebte Arzneipflanze und wurde in Gärten gezogen [2]. Das getrocknete

¹⁾ Auszug aus Diss. K. STÖCKEL, Basel 1968.

^{2) 315.} Mitt.: K. Stöckel, H. Hürzeler & T. Reichstein [1].

³⁾ Wir danken Herrn A.A. Bullock, Herbarium der Royal Botanical Gardens, Kew, auch hier bestens für seine Angaben.

Rhizom war als *Rhizoma Vincetoxici* oder *Radix Hirundinariae* officinell, hat jedoch heute seine Bedeutung fast völlig verloren. Wegen der früheren medizinischen Verwendung ist die Pflanze aber schon oft chemisch untersucht worden.

Über die ältere Literatur vgl. Wehmer [9], sowie Gager & Zechner [10]. Danach enthält die Droge reichliche Mengen eines Glykosidgemisches, das unter verschiedenen Namen wie Asclepiadin, Cynanchin, Asclepion usw., meist jedoch als Vincetoxin beschrieben wurde. Gager & Zech-NER [10] geben eine brauchbare Vorschrift zur Isolierung, die von Zechner & Kellermayr [11] verbessert wurde. Danach enthalten die getrockneten unterirdischen Teile [11a] ca. 1% «Vincetoxin», das als N-freies, farbloses, amorphes Pulver erhalten wurde. Die Reaktion auf 2-Desoxyzucker war positiv. Nach milder saurer Hydrolyse konnten ca. 17% eines krist. Aglykons vom Smp. 147-149° erhalten werden (keine Drehung und keine Analyse). Die Samen [10] [11 b] lieferten neben 12,5% fettem Öl [12] ca. 0,7% «Vincetoxin», teilweise sogar in mikrokristalliner Form [11b], das von Pfeifer [13] pharmakologisch untersucht wurde. Nach Ansicht der genannten Autoren [11 a-c], die sicher richtig ist, dürfte es sich bei allen in der Literatur als «Vincetoxin» beschriebenen Präparaten um Gemenge einander nahestehender Glykoside von komplizierter Struktur gehandelt haben. In letzter Zeit haben Korte & Mitarb. [14] noch über «Vincetoxin» publiziert, wobei die stark unterschiedlichen Ausbeuten an diesem Material auffallen (0,04% [14b] bzw. 0,3-0,5% [14c]. Hydrolyse soll p-Glucose, p-Thevetose, L-Oleandrose und einen unbekannten 2-Desoxyzucker [14d, e] (keiner davon isoliert) geben, daneben zwei amorphe Genine. Letztere lieferten bei der Selen-Dehydrierung zwei amorphe Kohlenwasserstoffe, deren UV.-Spektren angegeben werden [14d]. Die Glykoside des verwandten Cynanchum adriaticum Fritsch beschreibt ZECHNER [11d]. Angaben über Flavonglykoside in Vincetoxicum finden sich bei Trittler [15]. Die Isolierung von zwei neuen Quercetinglykosiden beschreiben Kozjek & Lebreton [16]. Vor kurzem fanden Pailer & Streicher [17], dass die Droge auch kleine Mengen (0,018%) Alkaloide enthält, von denen zwei (A und B) in Kristallen isoliert wurden. B erwies sich als identisch mit Tylophorin, das erstmals aus Tylophora asthmatica Wight et Arn (ebenfalls einer Asclepiadacee) erhalten worden war. Das Alkaloid A enthielt eine Methoxylgruppe weniger und war möglicherweise identisch mit Antofin (erstmals isoliert aus Antitoxicum funebre)4). Ein Alkaloid, das denselben Smp. zeigte, wie dieses, isolierten auch HAZNAGY et al. [18a]. Über die fungiziden Eigenschaften eines weiteren «Dragendorff-positiven Stoffes» aus Vincetoxicum berichten Ferenczy et al. [18b].

Im Rahmen einer systematischen Untersuchung verschiedener Asclepiadaceen haben wir auch den Schwalbenwurz analysiert und berichten im Folgenden darüber.

- 2. Beschaffung des Ausgangsmaterials. Für die Untersuchung erhielten wir von Herrn E. HAUSER am 18. Okt. 1963 13,7 kg frische unterirdische Teile (Rhizome mit Wurzeln, durch Waschen von Erde völlig befreit), die er in der Umgebung des Gardasees (Buco di Vela bei Trento, Val Vestino und Val d'Ampola) gesammelt hatte. Es handelt sich um eine relativ einheitliche, blassgelb blühende Sippe. Das Material wurde sofort nach dem Eintreffen bei ca. 40° getrocknet und lieferte 6,1 kg getrocknete Droge.
- 3. Extraktion und Vortrennung der Extrakte. 2,6 kg getrocknete Droge wurden in der Schlagmühle gemahlen, in zwei Portionen mit Wasser geweicht⁵), dann erschöpfend mit wässerigem Alkohol (von 50 auf 96% Alkoholgehalt steigend) bei 60° extrahiert. Die im Vakuum stark eingeengten Auszüge wurden mit Alkohol auf 50% Alkoholgehalt gestellt und nach früherer Vorschrift [19] mit Pb(OH)₂ gereinigt. Nach Entfernung des Alkohols im Vakuum wurde die wässerige Suspension durch fraktioniertes Ausschütteln mit Äther, Chloroform und Chloroform-Alkohol-Ge-

⁴⁾ Antitoxicum ist ein Synonym zu Vincetoxicum.

⁵⁾ Ob hierbei fermentativer Abbau eintritt, wurde nicht geprüft.

mischen grob in vier rohe Extrakte stark verschiedener Polarität getrennt, die wie üblich mit Sodalösung gewaschen wurden. Über die Ausbeuten und Eigenschaften der rohen Extrakte orientiert Tabelle 1.

Art des Extraktes und Präp. Nr.	Menge in g aus Probe 1 0,6 kg Droge	Probe 2 2 kg Droge	Kedde- Reaktion [20] ⁶)	Xanthydrol- Reaktion [21]?)	K_3 Fe(CN) ₆ -FeCl ₃ [22] ⁸)
Pe-Extr.	nicht bereitet	7,177 = 0,36%	_	+	_
Ae-Extr. roh (KST-18)	17,560 = 2,92%	87,2 = 4,36%	_	++	++
Ac-Extr. gereinigt	nicht bereitet	82,0 = 4,1 %		++	++
Chf-Extr. (KST-19)	15,312 = 2,55%	21,3 = 1,06%		++	++
Chf-Alk-(2:1) (KST-20)	3,607 = 0.6%	10,9 = 0,55%	_	++	++
Chf-Alk-(3:2) (KST-21)	2,703 = 0,45%	5,8 = 0.29%	_	++	++

Tabelle 1. Ausbeuten und Reaktionen der rohen Extrakte

Der rohe Ae-Extr. enthielt noch etwas Petroläther-lösliches Material. Bei Probe 2 wurde er durch Verteilung zwischen 80-proz. Methanol und Petroläther gereinigt. Der so erhaltene Pe-Extrakt enthielt Fettreste, Sterine usw., und gab noch schwach positive Xanthydrol-Reaktion, wurde aber nicht weiter untersucht. Die Hauptmenge der Glykoside befand sich in den Ae- und Chf-Extrakten, die zusammen über 5% der Droge ausmachten 9). Die relativ geringen Mengen der hochpolaren Glykoside (Chf-Alk-Extrakte) wurden nicht weiter untersucht. Der negative Ausfall der Kedde-Reaktion zeigt, dass keine Cardenolide anwesend waren. Die positive Reaktion mit $K_3[Fe(CN)_6]$ -FeCl $_3$ -Reagens spricht normalerweise für die Anwesenheit von Phenolen. Auf Versuche zur Entfernung phenolischer Stoffe wurde aber verzichtet, als sich zeigte, dass die hier vorliegenden neutralen Glykoside mit dem Reagens ebenfalls positiv reagierten.

Bei der Prüfung in Papierchromatogrammen (PC.) und Dünnschichtchromatogrammen (DC.) zeigten die Ae- und Chf-Extrakte in verschiedenen Systemen bei der Entwicklung mit SbCl₃ (in DC. auch mit *p*-Toluolsulfonsäure) überall durchgehende Bänder, die sich teilweise vom Start bis zur Front erstreckten. Schwerpunkte mit auffallenden Färbungen waren zwar sichtbar, eine Auflösung in einzelne Flecke war aber in keinem Fall möglich. – Versuche zur präparativen Trennung der genuinen Glykoside gaben kein befriedigendes Resultat¹⁰). Die Hauptmenge des Materials wurde daher einer milden sauren Hydrolyse¹¹) unterworfen und anschliessend die Spaltstücke getrennt.

⁶⁾ Dieses Reagens gibt mit allen Butenoliden eine violette F\u00e4rbung. Empfindlichkeit beim T\u00fcpfeln auf Papier ca. 0,002 mg.

⁷⁾ Dieses Reagens gibt mit allen 2-Desoxyzuckern und ihren Glykosiden eine rote Färbung.

⁸⁾ Dieses Reagens gibt mit den meisten Phenolen eine tiefblaue F\u00e4rbung. Gleich reagieren alle Stoffe, die sich durch Einelektronenprozesse leicht oxydieren lassen.

⁹⁾ Bei Probe 2 wurde öfter mit Äther ausgeschüttelt, daher ist der Anteil an Ae-Extr. relativ gross. Die Summe beider Extrakte ist bei beiden Proben praktisch gleich.

¹⁰⁾ Es wurde eine Trennung an SiO₂ mit den Systemen Cy-iPr-(4:1) und Be-An-(75:25) versucht. Zwei isolierte Stoffe, die nach DC. einheitlich waren, erwiesen sich aber nach Spaltungsversuchen als Gemische.

¹¹) Unter den verwendeten Bedingungen werden praktisch nur die Glykoside von 2-Desoxyzuckern gespalten.

4. Milde saure Hydrolyse [23] des Ae-Extrakts und des Chf-Extrakts. – Tabelle 2 gibt das Resultat von 2 Vorversuchen und einem Hauptversuch. Letzterer diente für die präparative Isolierung der Spaltstücke.

Eingesetztes Material	Erhaltene Spaltsti	ücke
	Genine roh	Zucker roh
1,640 g Ae-Extr. roh	1,053 g	0,632 g
2,126 g Chf-Extr.	1,309 g	0,760 g
35,0 g Ae-Extr. gereinigt	21,9 g	12,0 g

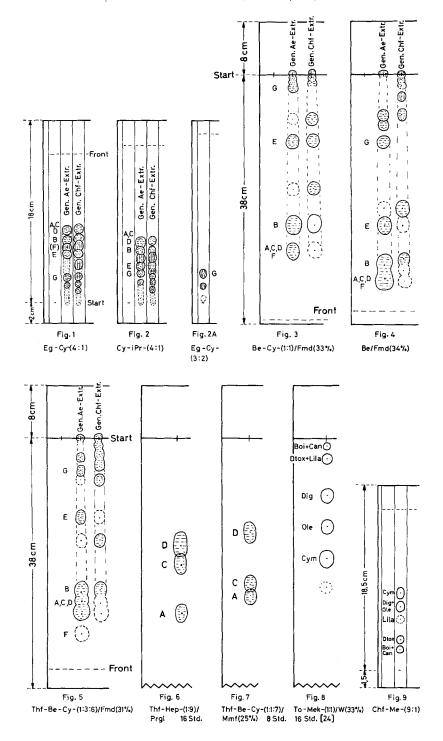
Tabelle 2. Milde saure Hydrolyse der Glykosidgemische

- 5. Trennung der Zucker. Die Zucker aus dem Ae-Extr. zeigten im PC. (in 2 Systemen [24]) 5 Flecke mit Laufstrecken entsprechend Digitoxose + Lilacinobiose, Boivinose + Canarose 12), Diginose, Oleandrose und Cymarose. Durch Chromatographie an SiO₂ liessen sich D-Cymarose, D-Digitoxose und wenig Lilacinobiose in Kristallen isolieren, sowie ein Gemisch von Diginose und Oleandrose. Dieses wurde durch präparative PC. getrennt, worauf sich L-Diginose in Kristallen isolieren liess. Die dabei nur amorph erhaltene Oleandrose wurde ins krist. Phenylhydrazid der zugehörigen Säure übergeführt [27] und so als D-Form identifiziert. Das binäre Gemisch von Boivinose und Canarose wurde nur durch PC., DC. und PE. als solches identifiziert, so dass nicht angegeben werden kann, welche der Antipoden vorlagen. Der Zuckersirup aus dem Chf-Extr. enthielt nach PC., DC. und PE. dieselben 6 Komponenten. Zur Prüfung auf normale Zucker wurde eine Probe des Zuckersirups sowie eine Probe des rohen Geningemisches mit Kiliani-Mischung [28] energisch hydrolysiert 13), worauf sich (durch DC. und PC.) Thevetose als einziger in 2-Stellung hydroxylierter («normaler») Zucker nachweisen liess. Glucose, die Korte [14d,e] in seinem Vincetoxin gefunden hatte, war in unserem Material offenbar nicht anwesend.
- **6. Vorprüfung der Genine.** Die rohen Genine aus Ae-Extr. zeigten im PC. (Fig. 3–5) und DC. (Fig. 1 und 2) eine Vielzahl von Flecken. Die am raschesten laufenden wurden mit Buchstaben (A–G) bezeichnet. Die rohen Genine aus dem Chf-Extr. zeigten in allen Fällen sehr ähnliche Bilder.

Da vermutet wurde, dass hier, wie bei vielen anderen Asclepiadaceen, Esterglykoside anwesend sind, wurde eine Probe der rohen Genine auch noch mit KOH in Methanol gekocht. Die Aufarbeitung (vgl. Exp. Teil) gab kein völlig klares Bild. Immerhin konnte festgestellt werden, dass höchstens Spuren von Essigsäure oder anderen leicht flüchtigen Säuren gebildet wurden; Benzoesäure und Zimtsäure waren abwesend. Eine merkliche Menge (ca. 15%) ätherlöslicher Säuren war ent-

¹²⁾ Die Anwesenheit von Boivinose und Canarose wurde erst nach präparativer Vortrennung durch PE. [25] dieses binären Gemisches festgestellt. Im PC. [26] sowie im DC. (vgl. Fig.9) zeigen diese zwei Zucker in den üblichen Systemen gleiche Laufstrecken.

¹³⁾ Beste Methode zur Freisctzung von Hexosen, 6-Desoxyhexosen und ihrer Methyläther aus Glykosiden. Einstündiges Erhitzen mit HCl in wässriger Essigsäure auf 100°. Die 2-Desoxyzucker werden dabei völlig zerstört.


standen, nach PC. lag ein Gemisch von ca. 7 Stoffen vor, die nicht identifiziert werden konnten. Die verbliebenen Neutralteile zeigten im PC. und DC. ein recht ähnliches Bild wie vor der alkalischen Hydrolyse, auch wenn gewisse Veränderungen eingetreten zu sein schienen¹⁴). Für die Trennung der Genine wurde daher auf eine alkalische Hydrolyse verzichtet.

7. Präparative Trennung der Genine aus Ae-Extr. - Die 21,9 g Genine aus gereinigtem Ae-Extr. wurden in zwei Portionen an SiO2 chromatographiert. Dabei liessen sich 1,8 g krist. Genin B gewinnen (davon 1,6 g analysenrein). Die Stoffe A, C, D wurden als Gemisch (ca. 3g) erhalten, die Stoffe E, F und G als rohe Konzentrate, aus denen aber nach erneuter Chromatographie alle drei in reinen Kristallen anfielen. Schwieriger war die Trennung von A, C und D. Schon ihre eindeutige Differenzierung stiess auf Schwierigkeiten und erforderte zwei Systeme im PC. Im ersten System (Fig. 6) zeigten C und D nahezu gleiche Laufstrecken und im zweiten (Fig. 7) laufen A und C fast genau gleich. Alle drei Stoffe zeigten zudem mit SbCl₃ praktisch gleiche Rotfärbung. Ein Teil des Gemisches (1,1 g) wurde durch Verteilungschromatographie im System von Fig. 7 getrennt. Dabei resultierten: ein Gemisch von A + C (279 mg), ca. 108 mg nahezu reines A, sowie 325 mg fast reines D. Aus diesem Konzentrat konnten 52 mg nicht ganz reine D-Kristalle isoliert werden. Ein Versuch zur Sublimation im Vakuum gab merkliche Zersetzung. Die unbehandelten D-Kristalle färbten sich bereits nach mehreren Stunden gelb, waren nach einigen Wochen dunkelbraun und nach PC. völlig zersetzt. Auch bei A und C handelte es sich um recht zersetzliche Stoffe, so dass auf weitere Versuche zur völligen Reinigung verzichtet wurde 15). Bei der folgenden Untersuchung beschränkten wir uns auf die Substanzen B, E, F und G. Es handelt sich um neue Stoffe, die wir mit Trivialnamen bezeichnet haben (vgl. Tab. 3 und 4). Tabelle 3 gibt eine Übersicht der Ausbeuten sowie eine Schätzung der im rohen Geningemisch wirklich enthaltenen Mengen, Tabelle 4 gibt die wichtigsten Eigenschaften, Gruppenreaktionen und die Bruttoformeln der isolierten Stoffe und einiger daraus bereiteter Derivate wieder. Es sind darin auch die Hydrierungsprodukte aufgenommen, die erst in der folgenden Mitteilung [33] beschrieben werden. Die Tabellen 5a und 5b geben einige Farbreaktionen 16). Die meisten dieser Stoffe wurden durch ihre UV.-Spektren (Fig. 10 und 11), IR.-Spektren (Fig. 12-20) und ihre Massenspektren (vgl. folgende Mitt. [33]) charakterisiert; einige Kommentare zu diesen Spektren finden sich bei den Figuren, eine weitere Besprechung erfolgt in der dritten Mitteilung [34], in der über die Strukturen berichtet wird, und in der auch die NMR.-Spektren wiedergegeben werden. Zur Erleichterung des Überblicks wurden die bewiesenen oder vermutlichen Formeln bereits in die Figuren eingesetzt.

¹⁴) Dies hat sich anschliessend als richtig erwiesen. Die Genine enthielten neben alkalistabilen Komponenten auch andere (z. B. Vincetogenin), die von Alkali verändert werden und die vermutlich eine Lactongruppe enthalten.

¹⁵) Es besteht die Möglichkeit, dass es sich bei A, C und D teilweise um Artefacte gehandelt hat, da die Stoffe B, E, F und G auch unter den Bedingungen der milden sauren Hydrolyse keineswegs völlig beständig sind. Das UV.- und das IR.-Spektrum von Substanz D zeigen Ähnlichkeit mit den Spektren von Iso-dihydroanhydrohirundigenin, es ist daher wohl möglich, dass dieser zersetzliche Stoff bei der sauren Hydrolyse aus B oder E entstanden ist.

¹⁶⁾ Die auffallende Rotfärbung, die viele der Inhaltsstoffe von Vincetoxicum mit SbCl₃ oder mit p Toluolsulfonsäure geben, ist zu ihrer Erkennung im PC. und DC. sehr nützlich.

Die Fig. 1, 2, 2A und 9 sind Dünnschichtehromatogramme, Ausführung aufsteigend auf Linienglas [29], bei 1–2 entwickelt durch Sprühen mit $SbCl_3$ (gesättigt, ca. 22% in Chf) und anschliessendes Erhitzen auf 90° [30], bei Fig. 9 Spritzen mit 15-proz. p-Toluolsulfonsäure in Alk und Erhitzen wie oben. – Fig. 3–8 sind Papierchromatogramme, Ausführung absteigend, bei Fig. 8 nach [24], bei Fig. 3–7 nach früheren Angaben [31], mit Wägung des Imprägniermittels [31c] und Entwicklung mit $SbCl_3$ wie oben. – Boi = Boivinose = 2,6-Didesoxy-xylohexose, Can = Canarose = 2,6-Didesoxy-arabinohexose, Cym = Cymarose = 3-O-Methyl-2,6-didesoxy-ribohexose, Dig = Diginose = 3-O-Methyl-2,6-didesoxy-lyxohexose, Dtox = Digitoxose = 2,6-Didesoxy-ribohexose, Olc = Oleandrose = 3-O-Methyl-2,6-didesoxy-arabinohexose, Lila = Lilacinobiose = 4-O-(3-O-methyl-6-desoxy- β -D-glucopyranosyl)-D-cymarose [32]. – Färbungen in den Fig. 1–7 vgl. Tab. 5a.

Tabelle 3. Ausbeuten an isolierten Stoffen, sowie rohe Schätzung der in 21,9 g Geningemisch (aus 855 g trockenen Rhizomen 17)) wirklich vorhandenen Mengen

Stoff	Isolierte M	enge	Geschätzte wirklicher	
	in mg	in %	in mg	in %
A, nicht isoliert, nur als				
Gemisch mit C		_	400	0,047
B = Anhydrohirundigenin	1800	0,21	3000	0,35
C, nicht isoliert, nur als				
Gemisch mit A	_	-	200	0,024
D	130	0,015	350	0,041
E = Hirundigenin	400	0,047	700	0,082
F = Hirundosid-A	90	0,01	200	0,024
G = Vincetogenin	90	0,01	200	0,024

8. Reaktionen und Schlussfolgerungen. – Hier soll noch folgendes hervorgehoben werden. Hirundigenin (E) geht beim Sublimieren im Vakuum leicht in Anhydrohirundigenin (B) über, was die nahe Verwandtschaft dieser zwei Stoffe beweist. Auch Hirundosid-A (F) ist nahe verwandt, denn es stellt ein Glykosid des Anhydrohirundigens dar, das als Zuckeranteil D-Oleandrose enthält. Die kleine Menge Hirundosid-A, die wir isoliert haben, ist offenbar bei der milden sauren Hydrolyse des rohen Glykosidgemisches ungespalten geblieben, denn reines Hirundosid-A wurde bei erneuter Hydrolyse unter gleichen Bedingungen glatt gespalten. Beide Spaltstücke liessen sich präparativ isolieren, nur enthielt das rohe Genin noch mehrere Nebenprodukte, da Anhydrohirundigenin (B) unter den Hydrolysebedingungen teilweise verändert wird. Auch Vincetogenin (G) ist auf Grund seiner Zusammensetzung und seiner Spektren mit B und E verwandt, enthält jedoch mehr Sauerstoff. Wie in

¹⁷⁾ Hier ist nur der geschätzte Gehalt in 21,9 g Geningemisch angegeben. Letzteres wurde aus 35 g gereinigtem Äther-Extrakt gewonnen und entspricht 855 g getrockneten Rhizomen. Es ist aber zu berücksichtigen, dass der Chloroform-Extrakt eine weitere Menge derselben Stoffe enthielt und dass alle diese Stoffe gegen Erwärmen mit Säure nicht völlig beständig sind, dabei teilweise sogar sehr rasch verändert werden (dies ist besonders bei F, aber auch bei E und G der Fall. E und F gehen dabei zunächst in B über). Die in den Rhizomen in gebundener Form wirklich vorhandenen Mengen an unversehrten Geninen dürften daher teilweise erheblich grösser gewesen sein.

Tabelle 4. Wichtigste Eigenschaften und Reaktionen der isolierten Stoffe und einiger ihrer Derivate

)					2)				
Stoff (in Klammern Präp. Nr.)	Smp. [\alpha].	Gesicherte (od. in Klam- mern: ver- mutl. Brutto- formel) (MolGew.)	Methoxyl nach Zeisel	$\mathrm{E}^{\mathrm{c}}\mathrm{Cl}^{\mathrm{3}}\left[\mathrm{SS} ight]_{\mathrm{8}}^{\mathrm{9}}$	Diazotierte Sulfanils. [36] ¹⁸)	Na.]O ₄ -Benzidin (37) ¹⁹)	KEDDE-Reaktion [20] ⁶)	Xanthydrol- Reaktion [21]7)	Blautetrazolium [38] ²⁰)	Alkal. [39]²¹) [39]²¹)	Spektren ²²)
A, nicht rein isoliert						ļ					
B = Anhydrohirundigenin (KST-1)	212–217° [–25,8 ± 3] An	$C_{21}H_{28}O_4$ (344,45)	0	+	1	1	i	t	f		UV. IR. NMR. MS. ORD.
Ac-B (KST-3)	156–158° [– 30,1 ± 3] An	$C_{23}H_{30}O_5$ (386,49)		+							UV. IR. NMR.
p-Brombenzoyl-B (KST-40)	$244-248^{\circ}$ Zers. [+0,6 \pm 3] Chf	$C_{28}H_{31}BrO_{5}$ (527,53)	ı								UV. IR. MS.
C, nicht rein isoliert			:				:				
D (nicht völlig rein) (KST-2)	88–92°										UV. IR.
E = Hirundigenin (KST-5)	$190-196^{\circ}$ Zers. $[-44, 8 \pm 2]$ Chf	$C_{21}H_{30}O_5$ (362,47)		1			. 1	. 1		١	UV. IR. NMR.MS.
Ac-E (KST-10)	168–178° [– 41,8 ± 3 Chf	C ₂₃ H ₃₂ O ₆ (404,51)								:	UV. IR. NMR.
F = Hirundosid-A (KST-22)	$207-212^{\circ}$ Zers. $[-65,6\pm4]$ An	$C_{28}H_{40}O_7$ (488,63)	+ 23)	+) 	1	+			UV. IR. NMR.MS.
G = Vincetogenin (KST-23)	$228-230^{\circ}$ Zers. $[-75,9\pm3]$ Me	$C_{21}H_{28}O_6$ (376,45)		1		 +		1	ı	1	UV. IR. NMR. MS.
Ac-G (KST-24)	251258° Zers. [0 ± 4] Chf	$C_{25}H_{32}O_{8}$ (460,53)									IR. NMR. MS.
Dihydro-B (KST-4)	$192-205^{\circ}$ Zers. [+91,5 ± 3] Chf	$C_{21}H_{30}O_4$ (346,47)		+							UV. IR. NMR.
Ac-dihydro-B (KST-8)	$178-182^{\circ}$ [+64,9 ± 3] Chf	$C_{23}H_{32}O_5$ (388,51)		+							UV. IR. NMR.

Tetrahydro-B (KST-6)	175–177° [+61,4 ± 3] Chf	$C_{21}H_{32}O_4$ - (348,49)	UV. IR. NMR. MS.
Ac-Tetrahydro-B (KST-16)	$166-170^{\circ}$ [+41,7 ± 4] Chf	$C_{23}H_{34}O_{5}$ (390,52)	IR. NMR.
Dihydro-desoxyhirundigenin	224–226°	C ₂₁ H ₃₂ O ₄ – (348,49)	UV. IR.
(KST-7)	[–26,1 ± 3] Chf		NMR. MS.
Ac-dihydro-desoxy-	190–193°	C ₂₃ H ₅₄ O ₅	IR. NMR.
hirundigenin (KST-17)	[– 34,9 ± 3] Chf	(390,52)	
Dihydro-14-seco- hirundigenin (KST-76)	234–240° Zers. $[-81,7 \pm 4]$ Me	$C_{21}H_{32}O_5$ (364,49)	IR. MS.
Tetrahydro-14- <i>seco</i> -	$220-230^{\circ}$ Zers. $[-36,8 \pm 4]$ Me	$C_{21}H_{34}O_5$	IR. MS.
hirundigenin (KST-75)		(366,50)	NMR.
Iso-dihydro-B (KST-12)	$181-183^{\circ}$ [$-31,5\pm3$] Me	$C_{21}H_{30}O_{4}$ – – – – (346,47)	+ UV. IR. ORD. ²⁴) NMR. MS.
Di-O-acetyl-iso-dihydro-	amorph	$C_{26}H_{34}O_{6}$ (430,45)	UV. IR.
anhydrohirundigenin (KST-33)	[-36,3 ± 3] An		MS. NMR.
Nebenprodukt	224–228°	$(C_{22}H_{34}O_{5}?)$	UV. IR.
(KST-26)		(378,51)	MS.
Tetrahydro-G (KST-38)	$245-251^{\circ}$ Zers. [$+5,3 \pm 4$] Chf	$C_{21}H_{22}O_{6}$ (380,49)	IR. MS.
Iso-terahydro-G	220–222°	$C_{21}H_{32}O_{\bf 6}$ (380,49)	UV. IR.
(KST-37)	[+24,8 ± 4] Chf		NMR. MS.
Di-O-acetyl-iso-tetrahydro-vincetogenin (KST-47)	$184-190^{\circ}$ [+26,5 ± 4] Chf	$C_{25}H_{36}O_{8}$ (464,56)	IR. MS.

+ bedeutet positive, - negative Reaktion. Wo nicht geprüft wurde, ist das entsprechende Feld offen gelassen.

¹⁸⁾ Die meisten Phenole sowie andere kuppelungsfähige Stoffe geben bei diesen Reaktionen gelbe bis rote Färbung.

¹⁹⁾ Reaktionsfähige Glykole und Ketole geben mit diesem Reagens farblosc-gelbe Flecke auf blauem Grund.

²⁰) Reaktionsfähige Ketole geben mit diesem Reagens eine Blaufärbung.

Aldchyde, Ketole, insbesondere auch Zucker und andere «reduzierende» Stoffe, geben mit diesem Reagens bereits bei 20° eine Schwarzfärbung. Einfache Phenole reagieren nicht, wohl aber o- und ρ -Dihydroxybenzole. 21)

 ²²⁾ Vgl. Fig. 10–20; NMR. in [34]; MS. in [33].
 23) Auf Grund des NMR.-Spektrums ist eine Methoxylgruppe anwesend, keine Zeisel-Bestimmung ausgeführt.

²⁴) Die optische Rotations-Dispersion (Fig.19 in [33]) zeigte einen stark negativen Corron-Effekt mit a = -144° in Me (a = 0,01 der molaren Amplitude).

Tabelle 5a. Farbreaktionen der nachgewiesenen Stoffe im DC. (SiO2) und PC. (Die Acetylderivate zeigten ähnliche Färbungen)

richt erhitzt auf 90° erhitzt SiO ₂ u. PC. sofort SiO ₂ u. PC. SiO ₂ fraglich fraglich orangerot orangerot cotviol. keine Färb. keine Färb. keine Färb. cotorangerot cot	Stoff	SbCl ₃ (22% in CH	$\rm SbCl_3$ (22% in CHCl $_3$) vgl. die Fig. 1–8 (SiO $_2$ und PC.)	(SiO ₂ und PC.)			-Loulol-
fraglich fraglich orangerot rotviol. Keine Färb. schwach keine Färb. rötl. braun rotorangerot rotorange		nicht erhitzt	auf 90° erhitzt				sulfonsaure, nur auf SiO ₂
fraglich fraglich corangerot grauviol. fraglich fraglich corangerot grauviol. rotviol. rotviol. rotviol. rotviol. rotviol. rotviol. graugrün corangerot grauviol. rotviol. graubraun graugrün corangerot rötl. braun rotbraun graubraun graubraun corangerot rotorange rotorange rotorange rotorange rotorange rotviol.		solo ₂ u. FC. sofort	nach 3 Min.		nach 10 Min.		
fraglich rotviol.25 rotviol. fraglich rotviol. rotviol. orangerot grauviol. orangerot graugrün orangerot rotviol. rotviol. rotviol. keine Färb. schwach graubraun graubraun keine Färb. rötl. braun rotbraun graubraun graubraun graubraun graubraun graubraun graubraun graubraun graubraun graubraun graubraun graubraun rotbraun			SiO ₂	PC.	SiO ₂	PC.	
fraglich rotviol.25 rotviol. rotviol. orangerot grauviol. orangerot graugrün orangerot rotviol. rotviol. rotviol. keine Färb. schwach graubraun graugrün keine Färb. schwach graubraun graugrün keine Färb. rötl. braun rotbraun graubraun graugrün graubraun graubraun graubraun graubraun graubraun graubraun graugrün rötl. braun rotbraun graubraun graubraun graubraun graubraun graugerot rotorange rotbraun graugrün rotbraun graugrün graubraun	A	fraglich		rotviol.		rotviol.	
fraglich orangerot grauviol. orangerot graugrün orangerot grauviol. orangerot graugrün orangerot graugrün orangerot rotviol. graugrün orangerot rötl. braun rotbraun graubraun graubraun orangerot rotorange rotorange rotoriol.	C	fraglich	rotviol. 25)	rotviol.	rotviol.	rotviol.	rotviol.
orangerot grauviol. orangerot graugrün orangerot rotviol. rotviol. rotviol. rotviol. keine Färb. schwach graubraun graugrün orangerot rötl. braun rotbraun graubraun E keine Färb. rötl. braun rotbraun graubraun orangerot rotorange rotorange rotorange rotviol.	D	fraglich		rotviol.		rotviol.	
orange grauviol. orangerot graugrün corangerot rotviol. graugrün graugrün orangerot rötl. braun rotbraun graubraun graubraun rothraun rotbraun graubraun rotorange rotorange rotorange rotviol.	В	orangerot	grauviol.	orangerot	graugrün	blauviol.	rotbraun
orangerot rotviol. graubraum graubraum rothraum rothraum graubraum rothraum rothraum graubraum rotorange rotorange rotorange rotviol.	田	orange	grauviol.	orangerot	graugrün	blauviol.	rotbraun
keine Färb. schwach graubraun graugrün orangerot rotbraun graubraun graubraun graubraun keine Färb. rötl. braun rotbraun graubraun graubraun orangerot rotorange rotorange rotorange rotoriol.	ĹΉ	orangerot	rotviol.	rotbraun	graugrün	graugrün	graugrün
keine Färb. schwach graubraun graugrün orangerot rötl. braun rotbraun graubraun graubraun keine Färb. rötl. braun rotbraun graubraun orangerot rotorange rotorange rotorange rotviol.	Ŋ	rotviol.	rotviol.	rotviol.	rotviol.	rotviol.	rotviol.
keine Färb. rötl. braun rotbraun graubraun graubraun orangerot rotorange rotorange rotorange rotorange rotorange rotorange rotorange rotoviol.	Dihydro-B	keine Färb.	schwach orangerot	graubraun	graugrün	graubraun	braunrot
keine Färb. rötl. braun rotbraun graubraun orangerot rotorange rotorange rotorange rotorange rotorange rotorange rotorange rotorange rotoriol.	Tetrahydro-B	keine Färb.	rötl. braun	rotbraun	graubraun	rotbraun	viol. rot
orangerot rotorange orangerot rotbraun rotorange rotorange rotorange rotviol.	Dihydro-desoxy-E	keine Färb.	rötl. braun	rotbraun	graubraun	rotbraun	viol. rot
orangerot rotorange rotorange rotbraun orangerot rotorange rotorange rotviol.	Isodihydro-B	orangerot	rotorange	orangerot	rotbraun	orangerot	rotorange
orangerot rotorange rotviol.	Tetrahydro-G	orangerot	rotorange	rotorange	rotbraun	rotorange	rotviol.
)	Iso-tetrahydro-G	orangerot	rotorange	rotorange	rotviol.	rotorange	rotviol.

25) A, C und D liessen sich im DC. nicht trennen.

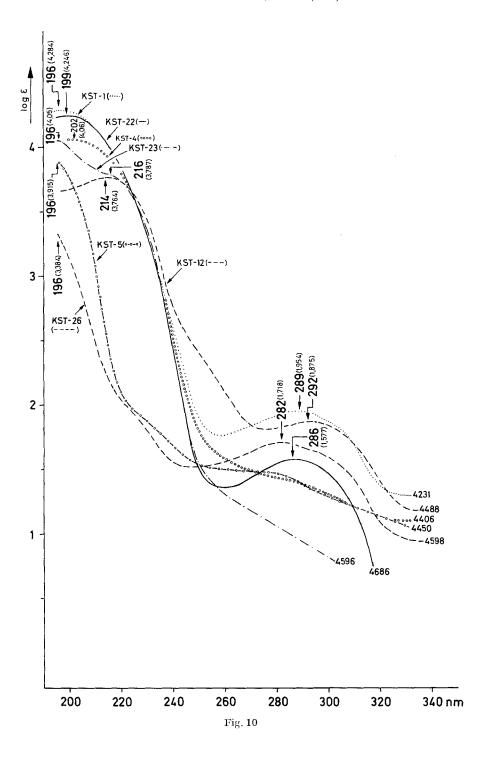
Zeit	В	D	Е	F	G
1 Min.	orange	fraglich	gelb	gelbbraun	himbeerrot
2 Min.	rotorange	fraglich	orange	gelbbraun	himbeerrot
3 Min.	rotorange Rand rotviol.	fraglich	rotorange Rand rotviol.	gelbbraun	himbeerrot
10 Min.	himbeerrot Rand rotviol.	fraglich	himbeerrot Rand rotviol.	rötl. braun Rand rotviol.	rotbraun
30 Min.	rotviol.	fraglich	rotviol.	rotviol.	braunrot

Tabelle 5b. Farbreaktionen der isolierten Stoffe mit 96-proz. H₂SO₄²⁶)

folgender Mitteilung [33] gezeigt wird, enthalten Hirundigenin (E) und Anhydrohirundigenin (B) ein 16-Methyl-15-oxa-pregnan-Gerüst. Ihre Struktur ist auf chemischem Wege nur teilweise, von Kennard et al. [35] durch Röntgen-Strukturanalyse sicher bewiesen worden. Vermutlich enthält auch Vincetogenin dasselbe Gerüst. Ein solches ist unseres Wissens noch bei keinem Naturprodukt beobachtet worden. – Diese Glykoside aus Vincetoxicum unterscheiden sich von vielen anderen in Asclepiadaceen aufgefundenen Glykosiden von Pregnanderivaten, nicht nur durch den im Sterinanteil aufgebrochenen der Dering, sondern auch durch die Tatsache, dass sie keine Estergruppen enthalten und dass an ihrem Aufbau fast nur 2-Desoxyzucker beteiligt sind.

9. Biologische Prüfung. – Die CIBA AKTIENGESELLSCHAFT, Basel, war so freundlich, die reinen Genine: Hirundigenin (KST-5), Anhydrohirundigenin (KST-1) und Vincetogenin (KST-23) sowie Hirundosid-A (KST-22), auf cytostatische Wirkung an Mastocytomzellen *in vitro* zu prüfen [41]. Die vier genannten reinen Präparate zeigten bis zu einer Konzentration von 100 µg/ml keine Wirkung. Eine gewisse, teilweise sogar starke Wirkung zeigten einige der rohen Glykosidgemische, sowie das rohe Geningemisch aus dem Chf-Extr. (vgl. Tab. 6).

Danach zeigte einzig der Chf-Extr. eine relativ starke Wirkung²⁸). Dieses Material zeigte auch gute Wirksamkeit gegen Pilze in vitro. Trichophyton interdigitale und


Tabelle 6. Cytostatische Wirkung der rohen Glykoside und Genine aus den unterirdischen Teilen von Vincetoxicum hirundinaria ²⁷)

Geprüftes Präparat	$\mathrm{ED}_{50} \ \mathrm{\mu g/ml}$
Ae-Extr. roh (KST-18)	1,0
Chf-Extr. (KST-19)	0,25
Chf-Alk-(2:1)-Extr. (KST-20)	3,0
Chf-Alk-(2:1)-Extr. (KST-21)	20,0
Genin-Gemisch (KST-34) aus Chf-Extr.	3,0

²⁶) Auf Porzellantüpfelplatte [40].

²⁷⁾ Wir danken den Herren J.GELZER, F. KNÜSEL und F. KRADOLFER in den Biologischen Laboratorien der CIBA AKTIENGESELLSCHAFT, Basel, für die Ausführung der Prüfung, und der Direktion dieser Abteilung für die Erlaubnis die Resultate (Briefe vom 30.3.1966 und 31.5.1967 sowie 20.2.1968) hier publizieren zu dürfen.

²⁸) In derselben Versuchsanordnung zeigt Colcemid eine ED₅₀ von 0,008 μ g/ml und Actinomycin D eine solche von 0,005 μ g/ml.

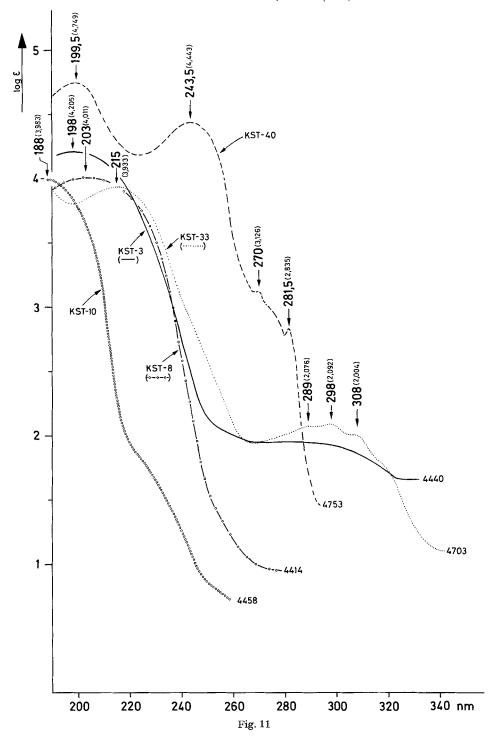


Fig. 10. UV.-Spektren in Alkohol²⁹) Kurve 4231 = B = Anhydrohirundigenin (KST-1) $\log \varepsilon = 4,284$ bei 196 nm; Max. bei 289 nm, $\log \varepsilon = 1,954$.

Kurve 4406 = Dihydro-B = Dihydro-anhydrohirundigenin (KST-4) Max. bei 202 nm, $\log \varepsilon = 4,06$. Kurve 4450 = E = Hirundigenin (KST-5) $\log \varepsilon = 3,915$ bei 196 nm.

Kurve 4686 = F = Hirundosid-A (KST-22) Kurve sehr ähnlich wie B, Max. bei 199 nm, $\log \varepsilon = 4,246$; Max. bei 286 nm, $\log \varepsilon = 1.577$. Kurve 4596 = G = Vincetogenin (KST-23) $\log \varepsilon = 4,05$ bei 196 nm; S bei 216 nm, $\log \varepsilon = 3,787$. Kurve 4488 = Is-odihydro-B = Iso-dihydro-

anhydrohirundigenin (KST-12) Max. bci 214 nm, $\log \varepsilon = 3,764$; Max. bei 292 nm, $\log \varepsilon = 1,875$.

Kurve 4598 = KST-26 = Nebenprodukt bei der Herstellung von Iso-dihydro-B

 $\log \varepsilon = 3,384$ bei 196 nm; Max. bei 282 nm, $\log \varepsilon = 1,718$.

Keine selektive Absorption zeigten Tetrahydrohirundigenin (KST-6), Dihydro-desoxy-hirundigenin (KST-7) und seine O-Acetylverbindung (KST-17) sowie Iso-tetrahydro-vincetogenin (KST-37). Fig. 11. UV.-Spektren in Cyclohexan²⁹)
Kurve 4440 = Ac-B = O-Acetylanhydro-hirundigenin (KST-3)
Max. bei 198 nm, log ε = 4,205; Max. bei ca. 290 nm, log ε = 1,93.
Kurve 4414 = Λc-dihydro-B = O-Acetyl-di-hydro-anhydrohirundigenin (KST-8)

Max. bei 203 nm, $\log \varepsilon = 4,011$. Kurve 4753 = p-Br-benz.-B = p-Brombenzoyl-anhydrohirundigenin (KST-40)

Max. bei 199,5 nm, $\log \varepsilon = 4,749$ Max. bei 243,5 nm, $\log \varepsilon = 4,443$ Max. bei 270 nm, $\log \varepsilon = 3,126$ Max. bei 281,5 nm, $\log \varepsilon = 2,835$ Kurve 4458 = Λ c-E = O- Λ cetyl-hirundigenin (KST-10) Max. bei 188 nm, $\log \varepsilon = 3,983$.

Kurve 4703 = Λ c-Iso-dihydro-B = O- Λ cetyl-iso-dihydro-anhydrohirundigenin (KST-33) Max. bei 215 nm, $\log \varepsilon = 3,933$; Max. mit Feinstruktur (?) bei 289 nm, $\log \varepsilon = 2,076$; 298 nm, $\log \varepsilon = 2,092$; 308 nm, $\log \varepsilon = 2,004$. Extinktionen ev. ungenau, da Präp. amorph.

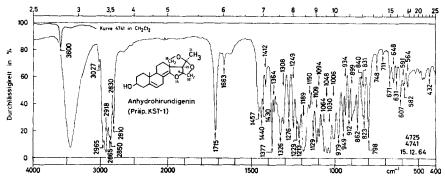


Fig. 12. IR.-Absorptionsspektrum von B=Anhydrohirundigenin (KST-1), Smp. 212-217° (Zers.). Hauptkurve 4725 entspr. 2,7 mg fest in ca. 300 mg KBr³⁰) 31). Teilstück Kurve 4741 entspr. CH₂Cl₂-Lösung, 0,06 m, d=0,2 mm 30).

this instance the adjacent group could account for the shift». Wir danken Frau Dr. Gallagher auch hier bestens für die Aufnahme und ihren Kommentar.

²⁹) Aufgenommen von Herrn K. AEGERTER auf einem BECKMAN-UV.-Spektralphotometer, Modell DK-2, log & überall berechnet auf die in Tab. 4 angegebenen Bruttoformeln.

³⁰⁾ Aufgenommen von den Herren W. Schwab und Ch. Senn auf einem Perkin-Elmer-Zweistrahl-Gitter-Spektrometer, Modell 125.

³¹⁾ Frau Dr. B. S. Gallagher, Institute for Steroid Research, Montefiori Hospital & Medical Center, 111 East 210th Street, Bronx, N.Y. 10467, fand auf einem Beckman-Spektrophotometer, Modell IR9, für die charakteristischen Banden der zwei Doppelbindungen eine etwas andere Lage, nämlich 1721 und 1667 cm⁻¹. Sie schrieb dazu (in lit. 19.11.65): «1721 cm⁻¹ undoubtedly due to a perturbed C-C-O-; other examples are found below 1700 cm⁻¹, but in

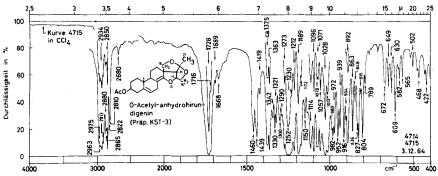


Fig. 13. IR.-Absorptionsspektrum von Ac-B = O-Acetyl-anhydrohirundigenin (KST-3), Smp. $156-158^{\circ}$.

Hauptkurve 4714 = 2,95 mg, obere Teile 0,5 mg fest in ca. 300 mg KBr. Teilstück, Kurve 4715, entspr. $0.06\,\mathrm{m}$ CCl₄-Lösung, $d=0.2\,\mathrm{mm}^{30}$), hier lagen die kurzwelligen Hauptbanden bei 2970, 2940, 2885, 2855, 2812, 1732 und 1664 cm⁻¹, die kleine Zacke bei 1720 cm⁻¹. Wie ersichtlich, ist bei Kurve 4715 im 4000–3100 cm⁻¹-Bereich keine Bande sichtbar, eine HO-Gruppe ist daher abwesend.

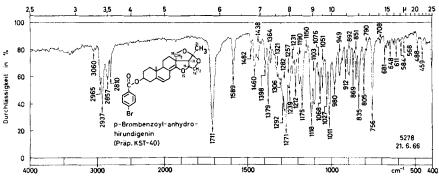


Fig. 14. IR.-Absorptionsspektrum von p-Brombenzoyl-anhydrohirundigenin (KST-40), Smp. 244-248°.

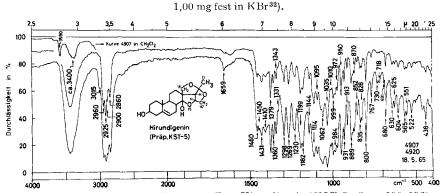


Fig. 15. IR.-Absorptionsspektrum von E = Hirundigenin (KST-5), Smp. 190–196°.

Obere Hauptkurve (4920) = 0,6 mg, untere Hauptkurve = 3 mg, fest in ca. 300 mg KBr. Teil-kurve 4907 entspr. CH₂Cl₂-Lösung, 0,06 m, d = 0,2 mm³²).

³²⁾ Aufgenommen von Herrn K. Aegerter und W. Schwab; es diente dazu das oben 30) genannte Instrument.

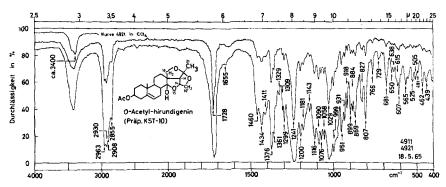


Fig. 16. IR.-Absorptionsspektrum von O-Acetyl-hirundigenin (KST-10), Smp. 168–178°. Obere Hauptkurve (4911) = ca. 0,6 mg, untere Hauptkurve = 2,62 mg, fest in ca. 300 mg KBr. Teilkurve 4921 (5% nach oben versetzt) entspr. $0,06 \,\mathrm{m}$ CH₂Cl₂-Lösung, $d=0,2 \,\mathrm{mm}^{32}$). In letzterer ist im HO-Gebiet nur eine Bande bei ca. 3400 cm⁻¹ sichtbar, entspr. einer stark verbrückten HO-Gruppe.

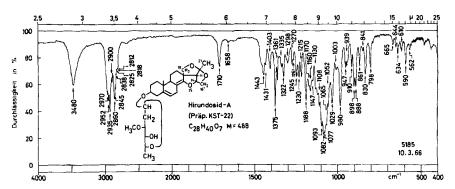


Fig. 17. IR.-Absorptionsspektrum von F = Hirundosid-A (KST-22), Smp. 207-212°. 0,69 mg fest in ca. 300 mg KBr 32).

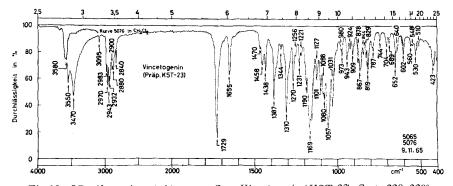


Fig. 18. IR.-Absorptionsspektrum von G=Vincetogenin (KST-23), Smp. 228-230°. Hauptkurve 5065 = 0,77 mg fest in ca. 300 mg KBr. Teilkurve 5076 entspr. 0,06 m CH₂Cl₂-Lösung, d=0,2 mm³²).

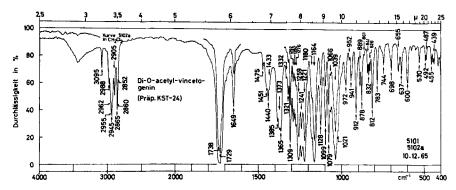


Fig. 19. IR.-Absorptionsspektrum von Di-O-acetyl-vincetogenin (KST-24), Smp. 251-258°.

Hauptkurve 5101 = 1,06 mg (oberes Teilstück = ca. 0,5 mg) fest in ca. 300 mg KBr. Teilkurve 5102 a = 0,06 m CH₂Cl₂-Lösung, d = 0,2 mm³²).

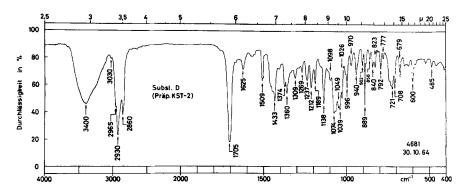


Fig. 20. IR.-Absorptionsspektrum von Subst. D (KST-2), Smp. 88-92°, nicht sicher rein, sofort nach der Isolierung aufgenommen, Bruttoformel unbekannt; 1,2 mg fest in ca. 300 mg KBr³⁰).

Das Spektrum zeigt eine gewisse Ähnlichkeit mit demjenigen von Iso-dihydro-anhydrohirundigenin (Fig.14 in [33]), so besonders durch die Banden bei ca. 1625 und 1509 cm⁻¹ und durch die Anwesenheit einer Bande bei 1705 cm⁻¹, sowie der scharfen Bande bei 889 cm⁻¹, die für das Vorliegen einer Vinylgruppe spricht.

T. mentagrophytes wurden bereits durch eine Konzentration von 0,2 μg/ml in ihrem Wachstum gehemmt, Aspergillus elegans durch 1,5 μg/ml und Candida albicans durch 4μg/ml. In vivo war hingegen an Mäusen bei wiederholter subcutaner oder oraler Gabe von 100 mg/kg keine Wirkung gegen Candida albicans festzustellen. Bei den übrigen mikrobiologischen Untersuchungen gab das Präparat bis 100 μg/ml negative Resultate (Staphylococcus aureus, Streptococcus mitis, Escherichia coli, Pseudomonas aeruginosa, Proteus vulgaris, Entamoeba histol. und Trichomonas foetus).

Der eine von uns (K. St.) dankt der CIBA-Aktiengesellschaft, Basel, auch hier bestens für ein Stipendium, das ihm die Ausführung dieser Arbeit in Basel ermöglichte. Ferner danken wir der BIGA, Bundesamt für Industrie, Gewerbe und Arbeit in Bern für einen Beitrag zur Beschaffung des Pflanzenmaterials und dem Schweizerischen Nationalfonds zur Förderung der Wissenschaftlichen Forschung für einen Beitrag zu den Kosten dieser Untersuchung.

Experimenteller Teil

Allgemeine Angaben. – Alle Smp. wurden auf dem Kofler-Block bestimmt und sind korrigiert. Fehlergrenze in benützter Ausführung bis 200° ca. ± 2°; darüber ± 3°. Substanzproben für Drehungsbestimmungen wurden 1 Std. bei 60° und 0,01 Torr getrocknet, für Spektren und Analysen 3-4 Std. bei 20° und 0,01 Torr. Zur Analyse wurde danach noch weiter, wie jeweils angegeben, bei 0,01 Torr über P₂O₅ getrocknet. – Zur Adsorptionschromatographie nach Duncan [42] diente SiO₂ «Merck» (Korngrösse 0,05–0,2 mm), für Dünnschichtchromatographie (DC.) Kieselgel G nach Stahl [43]. Die Papierchromatogramme (PC.) wurden auf Whatman-Papier Nr.1, imprägniert mit W oder anderen stationären Phasen (ca. 33% des Trockengewichtes [31 c]), absteigend ausgeführt. Wo nichts anderes angegeben, wurden die DC. und PC. durch Besprühen mit 22-proz. SbCl₃ in CHCl₃ und anschliessendes Erhitzen auf ca. 100° (4–5 Min.) entwickelt. – Reaktionen: Ausführung der Kedder-Reaktion [20], der Xanthydrol-Reaktion [21], der Barton-Reaktion [22], der Reaktionen mit Blautetrazolium [38], NaJO₄-Benzidin [37], diazotierter Sulfanilsäure [36] und alkalischer Silberdiamminlösung [39] nach früherer Lit. – Übliche Aufarbeitung bedeutet: Eindampfen im Vakuum, Aufnehmen in Ae-Chf-(3:1), zweimaliges Waschen mit kalter (0°) 0,5 n HCl, 10-proz. KHCO₃-Lösung und W, Trocknen über Na₂SO₄ und Eindampfen (meist im Vakuum).

Abhürzungen: AcOH = Eisessig, Ac₂O = Acctanhydrid, Ae = Diäthyläther, Alk = Äthanol, An = Aceton, Be = Benzol, Bu = n-Butanol, Chf = Chloroform, Cy = Cyclohexan, Eg = Äthylacetat, Fmd = Formamid, Fr. = Fraktion(en), Hep = Heptan, iPr = Isopropanol, Me = Methanol, Mek = Butanon, ML. = Eingedampfte Mutterlauge, Mmf = Monomethylformamid, MS. = Massenspektrum, Pe = Petroläther, PE. = Papier-Elektropherogramm und Papier-Elektrophorese, Pgl = Propylenglykol, Pn = Pentan, Py = Pyridin, Sp = Spektrum, Thf = Tetrahydrofuran, To = Toluol, W = Wasser; Verhältniszahlen bei Gemischen beziehen sich auf Volumina.

Extraktion der Wurzeln und Vortrennung der Extrakte. – Probe 1. 600 g getrocknete und fein gemahlene Wurzeln wurden mit 21 W angeteigt, 12 Std. bei 20° stehengelassen und anschliessend nach früherer Vorschrift [19a] weiterbehandelt. Sie gaben die in Tab. 1 aufgeführten Ausbeuten an neutralen Extrakten.

Probe 2, 2 kg Wurzeln wurden genau gleich extrahiert, Ausbeute vgl. Tab. 1.

Entfellung des rohen Ätherextraktes. 87,2 g roher Ätherextrakt wurden durch Verteilung zwischen 80-proz. Me und Pe entfettet [44] und gaben 7,177 g Pe-Extr. als orange-rotes dickes Öl (nicht untersucht) und 80 g entfetteten Ae-Extrakt.

Hydrolysen und Extrakte. – Milde saure Hydrolyse des Ätherextraktes. – a) Vorversuch³³). 1,640 g Ac-Extr. wurden nach früherer Vorschrift [23] mild hydrolisiert. Erhalten wurden 1,053 g rohes Geningemisch und 0,632 g roher Zuckersirup. Das Geningemisch zeigte im DC. (Fig. 1, 2) und im PC. (Fig. 3–5) eine Vielzahl von Flecken. Das Zuckergemisch zeigte im DC. (Fig. 9) 4 Flecke, im PC. in zwei Systemen (To-Bu-(4:1)/W, To-Mek-(1:1)/W (Fig. 8)) jeweils 5 Flecke. Die R_{Cym}-Werte [24] stimmten mit denjenigen überein, die für Boivinose, Digitoxose, Diginose, Oleandrose und Cymarose angegeben werden [24]. Wie die präparative Trennung zeigte (siehe unten), war ausser diesen 5 Zuckern noch Canarose anwesend.

b) Hauptversuch. 35 g entfetteter Ac-Extrakt wurden genau gleich hydrolisiert und lieferten 21,9 g Geningemisch und 12 g gelben Zuckersirup.

Milde saure Hydrolyse des Chloroformextraktes. Eine Probe dieses Materials (2,126 g) wurde wie oben hydrolisiert. Die Aufarbeitung geschah gleich, nur wurde zum Ausschütteln reines Chf verwendet. Erhalten wurde 1,309 g Geningemisch, das im DC. (Fig. 1, 2) und im PC. (Fig. 3–5) eine Vielzahl von Flecken zeigte, sowie 0,760 g Zuckersirup, der im PC. (Fig. 8) dieselben 5 Flecke zeigte wie der Zuckersirup aus dem Ae-Extr.

Energische Hydrolyse des Geningemisches aus dem Ätherextrakt. 285 mg Geningemisch wurden mit 10 ml Kiliani-Mischung³⁴) 1 Std. auf 100° erhitzt. Die Aufarbeitung nach Rheiner et al. [45]

³³⁾ Dieser Versuch wurde mit nicht entfettetem Ae-Extrakt ausgeführt.

³⁴) Gemisch von konz. HCI-AcOH-W-(1:3,5:5,5) [28].

gab als «Zuckerfraktion» nur 3 mg hellgelben Rückstand. Die Prüfung mit Partridge-Reagens [46] war negativ. Normale Zucker waren im geprüften Geningemisch somit abwesend.

Energische Hydrolyse des Geningemisches aus dem Chf-Extrakt. 294 mg Geningemisch wurden genau wie oben behandelt und lieferten 222 mg dunkelbraune Anhydrogenine, die nicht untersucht wurden, sowie aus der wässerigen Phase 3 mg hellgelben Rückstand. Die Zuckerprüfung mit Partidge-Reagens [46] war auch hier negativ.

Trennung der Zucker aus Ae-Extr. – 6,4 g Zuckersirup wurden an 2 kg SiO₂ chromatographiert. Die Säule wurde mit Chf bereitet, eluiert wurde mit Chf-Me-Gemischen. Resultat siehe Tabelle 7.

FrNr.	Lösungsmittel	-	Zusammensetzi	ung ³⁵)	Weitere Verarbeitung
	200 ml je Fr.	rückstand Menge in mg	PC.	PE.	
1- 25	Chf-Me-(95:5)	_			
26	Chf-Me-(95:5)	120			nicht weiter untersucht
27- 31	Chf-Me-(95:5)	53			nicht weiter untersucht
32	Chf-Me-(95:5)	528	Cym		nach Dest. 70 mg Krist.
33	Chf-Me-(95:5)	938	Cym		nach Dest. 317 mg Krist.
34	Chf-Me-(95:5)	468	Cym		nach Dest. 32 mg Krist.
35	Chf-Me-(95:5)	190	Cym		nach Dest. 90 mg Krist.
36 39	Chf-Me-(95:5)	216	Cym (Ole) (Dig))	
40- 43	Chf-Me-(95:5)	1225	(Cym) Ole Dig		Chrom. an SiO ₂ ,
					dann präp. PC.
44- 51	Chf-Me-(95:5)	1095	Ole, Dig		Präp. PC.
52- 67	Chf-Me-(95:5)	62	Ole, Dig		Präp. PC.
68	Chf-Me-(95:5)	10	Lila (Ole) (Dig)		Chrom. an SiO ₂
69	Chf-Me-(93:7)	10	Lila (Ole) (Dig)		Chrom. an SiO ₂
70	Chf-Me-(93:7)	10	Lila (Ole) (Dig)		Chrom. an SiO ₂
71- 92	Chf-Me-(93:7)	101	Dtox, Ole, Dig		nicht getrennt
9 3 - 96	Chf-Me-(9:1)	333	Dtox		247 mg Krist.
97-107	Chf-Me-(9:1)	415	Dtox		110 mg Krist.
108-114	Chf-Me-(9:1)	181		Dtox (Can) (Boi)	nicht getrennt
115-118	Chf-Me-(9:1)	168		Dtox, Can, Boi	
119–122	Chf-Me-(9:1)	101		(Dtox) Can, Boi	PE.
123-134	Chf-Me-(9:1)	90		(Dtox) Can, Boi	
	Tota	16314			

Tabelle 7. Trennung von 6,4 g Zuckersirup an 2 kg SiO2

Die Fr. 32–34 wurden jeweils einzeln bei $80-100^{\circ}$ Ölbadtemp./0,01 Torr destilliert und die farblosen Destillate anschliessend aus abs. Ae kristallisiert; sie lieferten 419 mg krist. D-Cymarose. Die braungelben Destillationsrückstände wurden nicht weiter untersucht. Eine Probe Zucker wurde nochmals umkristallisiert und zeigte Smp. $85-90^{\circ}$ (Präp. KST-63), $[\alpha]_{589}^{22} = +53.4^{\circ} \pm 4^{\circ}$ (c=0.4918 in W) (nach 25 Min; nach 13 Std. ebenso). Der Misch-Smp. mit D-Cymarose zeigte keine Depression, auch die Laufstrecken im PC. waren gleich.

Die Fr. 35 (190 mg) gab nach der Destillation 180 mg farblosen Sirup, der aus abs. Ae 90 mg krist. p-Cymarose vom Smp. 77–83 $^{\circ}$ gab.

Die Fr. 40–43 (1225 mg) wurden an 320 g SiO₂ mit Chf-Me-(95:5) chromatographiert. Dabei erhielt man 944 mg Material, das nach PC. nur noch *Diginose* und *Oleandrose*, aber keine Cymarose mehr enthielt. 350 mg davon wurden zur präparativen Papierchromatographie (siehe unten) verwendet.

³⁵⁾ Abkürzungen wie bei Fig. 8-9.

Die Fr. 68 und 70 (20 mg teilweise krist, gelber Sirup) wurden an 1 g SiO₂ mit Chf-Me-(92:8) chromatographiert. Erhalten wurden 15 mg farbloser Honig, aus An-Pn farblose Prismen Smp. 168–182°. Nach DC. (Chf-Me-(9:1)) waren die Kristalle nicht ganz einheitlich, bestanden aber zur Hauptsache aus Lilacinobiose.

Die Fr. 69 (10 mg gelbliche Kristalle, Smp. 177–183") wurden an 0.5 g SiO₂ wie oben chromatographiert. Erhalten wurden 7 mg farbloser Honig, aus An-Pn farblose Prismen vom Smp. 177–184° (Präp. KST-74), $[\alpha]_{589}^{22} = +29.7^{\circ} \pm 3^{\circ}$ (c=0.363 in W). Sie waren nach PC. fast einheitlich und nach Mischprobe und IR.-Spektrum identisch mit authentischer *Lilacinobiose* [32].

Die Fr. 93–107 gaben aus An-Ae insgesamt 357 mg krist. D-Digitoxose. Ein Teil wurde nochmals umkristallisiert und lieferte farblose Nadeln vom Smp. 99–105° (Präp. KST-64), $[\alpha]_{589}^{22} = +47.2^{\circ} \pm 4^{\circ} (e = 0.9817 \text{ in W})$ nach 10 Min.; $[\alpha]_{589}^{22} = +48.4^{\circ} \pm 4^{\circ}$ nach 4 Std. Misch-Smp. mit D-Digitoxose ohne Depression.

Die Fr. 108–134 wurden nur im DC. und PE. untersucht. Sie stellten Gemische von Dtox, Can und Boi dar.

Energische Hydrolyse des rohen Zuckergemisches aus Ae-Extrakt. 522 mg Zuckersirup wurden mit 20 ml Kiliani-Mischung [28] wie oben behandelt. Aus dem Chf-Ae-(1:2)-Auszug erhielt man 282 mg schwarzen Sirup (nicht untersucht). Die wässerige Phase lieferte 57 mg gelben Honig, der nach PC. (To-Bu-(1:2)/W) und DC. (Eg-iPr-Me-70:15:15) Thevetose als einzigen Zucker enthielt.

Präparative Papierchromatographie der Fr. 40–43 von Tab.7. 350 mg der an SiO₂ gereinigten Fr. 40–43 von Tab.7 wurden auf 10 Bögen Filterpapier Whatman Nr.1 (40×46 cm) mit Mek-To (1:1)/W (16 Std.) getrennt. Zur Lokalisierung der Substanzzonen wurden nach kurzer Trocknung (5 Min. bei ca. 90°) aus jedem Filterbogen 3 schmale Streifen ausgeschnitten und mit Vanillin-Perchlorsäure-Reagens [47] entwickelt. Die Substanzzonen schnitt man aus, zerkleinerte sie mit der Schere und extrahierte sie 4mal mit An-Me-(1:1).

Von der langsamer laufenden Komponente (Dig) wurden so 162 mg Rohprodukt als Sirup erhalten. Destillation bei 0,01 Torr wie oben und Kristallisation aus Ae-Pn lieferten 92 mg L-Diginose in farblosen Nadeln vom Smp. 81–87° (Präp. KST-65), $[\alpha]_{589}^{22} = -63.4^{\circ} \pm 4^{\circ}$ (c = 0.678 in W) nach 10 Min.; $[\alpha]_{589}^{22} = -59.6^{\circ} \pm 4^{\circ}$ nach 5 Std. Misch-Smp. mit L-Diginose ohne Depression.

Von der schneller laufenden Komponente (Ole) wurden 165 mg Rohprodukt (gelber Sirup) erhalten. Dieses Material wurde bei 0,01 Torr im Molekularkolben destilliert und das Destillat an 10 g SiO₂ mit Chf-Me-(47:3) chromatographiert. Erhalten wurden 144 mg farbloser Sirup, $[\alpha]_{589}^{23} = -8.0^{\circ} \pm 3^{\circ}$ (c = 0.674 in W), der nach PC, und DC, nur den Oleandrose-Fleck zeigte, sich aber nicht kristallisieren liess.

p-Oleandronsäure-phenylhydrazid. 139 mg vom obigen Sirup wurden nach früherer Vorschrift [27] mit Bromwasser oxydiert und lieferten 117 mg rohes und 110 mg destilliertes Lacton als farblosen Sirup. Nach Umsetzung mit 85 mg reinem Phenylhydrazin und Chromatographie an 16 g SiO₂ (Chf-Me-(9:1)) wurden 58,9 mg gelblicher Sirup erhalten. Aus Me-Ae 20 mg farblose, zu Drusen vereinigte Nadeln, Smp. 127-130° (Präp. KST-71), $[\alpha]_{589}^{23} = -18,7^{\circ} \pm 2^{\circ}$ (c = 1,452 in Me). Nach Mischprobe und IR.-Spektrum identisch mit authentischem Material.

Alkalische Hydrolyse des Geningemisches. – a) Aus dem Ae-Extrakt³³), 300 mg Geningemisch wurden mit 9 ml 5-proz. KOH in Me unter N₂ 2 Std. unter Rückfluss gekocht. Dann wurde mit 9 ml W versetzt, im Vakuum auf ca. 8 ml eingeengt, mit H₃PO₄ kongosauer gemacht und 3mal mit 35 ml Ae-Pn-(1:1) ausgeschüttelt. Die Ae-Pe-Extrakte wurden einmal mit 3 ml W, 3mal mit 6 ml 2 N Na₂CO₃-Lsg. und noch einmal mit 3 ml W gewaschen, über Na₂SO₄ getrocknet und im Vakuum eingedampft. Es verblieben 75 mg neutrales Material (vgl. Tab. 8).

Die vereinigten $\mathrm{Na_2CO_3}$ -Auszüge wurden mit $2\,\mathrm{N}$ HCl angesäuert und 3mal mit 35 ml Ae ausgeschüttelt. Die Ae-Extrakte wurden mit 3 ml W gewaschen, getrocknet und im Vakuum eingedampft. Es verblieben 42 mg ätherlösl. Säuren und Lactone.

Die phosphorsaure, wässerige Phase wurde von organischen Lösungsmittelresten befreit, mit 50-proz. K_2CO_3 alkalisch gemacht und anschliessend erst 3mal mit je 35 ml Chf und dann 3mal mit je 30 ml Chf-Alk-(2:1) ausgeschüttelt. Die Auszüge wurden 2mal mit wenig W gewaschen, über Na_2SO_4 getrocknet und im Vakuum eingedampft; sie lieferten 121 mg Chf-Auszug und 7 mg Chf-Alk-(2:1)-Auszug. Dieses Material zeigte nach DC. und PC, sehr ähnliche Zusammensetzung wie das Geningemisch vor der alkalischen Verseifung. – Die alkalische, wässerige Phase wurde im Vakuum von Lösungsmittelresten befreit, mit H_3PO_4 kongosauer gestellt und im Vakuum bei 60° /

60 Torr bis zur Trockne eingedampft. Das bei 0° aufgefangene Destillat wurde mit 0,01n Natronlauge gegen Phenolphtalein titriert, wobei nur ein Verbrauch von 2 ml festgestellt wurde, entspr. 1,2 mg Essigsäure (vgl. Tab.8).

b) Aus dem Chf-Extr. 292 mg Geningemisch des Chf-Extraktes wurden genau gleich wie das Geningemisch des Ac-Extraktes behandelt. Ausbeuten siehe Tabelle 8.

	neutr. Ae-Pe- Auszug ³⁶)	Ae-Pe- lösl, Säuren + Lactone	neutr. Chf-Auszug	neutr. Chf-Alk- (2:1)-Auszug	Flüchtige Säure: verbr. 0,01n KOH
300 mg	75 mg	42 mg	121 mg	7 mg	2 ml
Geningemisch	brauner	gelber	brauner	brauner	entspr.
aus Ae-Extr.	Honig	Honig	Honig	Honig	1,2 mg AcOH
292 mg	49 mg	38 mg	128 mg	22 mg	1,9 ml
Geningemisch	gelber	brauner	brauner	brauner	entspr.
aus Chf-Extr.	Honig	Honig	Honig	Honig	1,14 mg AcOH

Tabelle 8. Ausbeuten der alkalischen Hydrolyse des Geningemisches

Untersuchung des Ae-Pe-löslichen Säure-Lacton-Gemisches aus alkalischer Verseifung der Genine aus Ae-Extr. Dieses Gemisch (42 mg, vgl. Tab.8) wurde nur im PC. und DC. untersucht. Im PC. wurde im System 1 (Bu geschüttelt mit wässeriger 1,5 n NH₃-Lösung [48], Entwicklung mit Durchziehen durch eine Lösung von Universalindikator «Merck», die vorher mit 0,01n NaOH auf pH = 9 gestellt war [49]) nur ein rasch wandernder Fleck erhalten (R_{Benzoes.} = 1,9; Zimtsäure zeigt dabei 1,26, war also sicher auch abwesend). Auch in anderen Systemen [50] war bei gleicher Entwicklung jeweils nur ein Fleck sichtbar. Bei Entwicklung durch Sprühen mit SbCl₃ [30] waren im obigen System 1, ausser einem Fleck am gleichen Ort, noch zwei weitere Flecke, noch raschere, sichtbar (R_{Benzoes.} = ca. 1,98 und 2,13). Im System To-Bu-(9:1)/W waren bei der Entwicklung mit SbCl₃ sogar total 6 Flecke (davon nur 3 stark) sichtbar. Wir glauben, dass dieses Material ausser einer Säure noch Neutralstoffe enthielt.

Zur Prüfung im DC. wurden Platten mit SiO_2 , das mit H_2SO_4 und Fluoreszenzindikator präpariert war [51], gleichmässig beschichtet. Nach der Entwicklung mit Pe-Ae-(1:1) wurden unter der UV.-Lampe [51] 3-4 Flecke sichtbar, die erheblich langsamer als Benzoesäure liefen (R_{Benzoes} = ca. 0,38; 0,082; 0,03 und ca. 0).

Untersuchung des Ae-Pe-löslichen Säure-Lacton-Gemisches aus alkalischer Verseifung der Genine aus Chf-Extr. Im PC. im System 1 und Entwicklung mit Universalindikator wurde wieder nur ein Fleck erhalten mit gleicher Laufstrecke wie oben. Die Entwicklung mit SbCl₃ gab teilweise gleiche Flecke, aber weniger als das obige Material aus dem Ae-Extr.

Präparative Trennung der Genine aus dem Ae-Extr. - 1. Versuch. 10,5 g Geningemisch wurden an 1,9 kg SiO₂ chromatographiert. Da es im Eluiermittel Cy-iPr-(9:1) unlöslich war, wurde es in Chf-Ae-(1:4) gelöst, mit 25 g SiO₂ vermischt und im Vakuum getrocknet. Das so beladene SiO₂ wurde zwischen 2 Filterblättern oben auf die Säule gegeben. Laufgeschwindigkeit 600 ml pro 8 Std. Resultat vgl. Tabelle 9.

Die Fr. 8 und 9 von Tabelle 9 enthielten 3 Stoffe (A, C, D), zu deren Nachweis im PC. 2 Systeme nötig waren (vgl. Fig.6 und 7). 1,1 g dieses Materials wurden durch Verteilungschromatographie getrennt (s. Tab.11).

Die Fr. 12–14 von Tab. 9 gaben aus Me 908 mg krist. Genin B und daraus 810 mg analysenreines Material, Smp. 212–217°.

Die Fr. 17 und 18 von Tab. 9 gaben aus An-Ae 45 mg rohe Substanz F. Sie wurde an 5 g SiO_3 grob chromatographiert (Eg-Cy-(3:2)). Das Eluat (42 mg) gab aus Me 20 mg reine Substanz F in farblosen Nadeln vom Smp. $207-212^{\circ}$.

³⁶⁾ Dieser Teil könnte auch solche Lactone enthalten, die sich aus den zugehörigen Hydroxysäuren sehr leicht zurückblilden.

FrNr.	Lösungsmittel	Eindam	pfrückstand		
	600 ml je Fraktion	Menge in mg	Habitus	Flecke im PC. bzw. DC.	weitere Verarbeitung
1- 5	Cy-iPr-(9:1)	176	gelbes Öl		nicht getrennt
6, 7	Cy-iPr-(9:1)	109	brauner Honig		nicht getrennt
8, 9	Cy-iPr-(9:1)	1546	brauner Honig	A, C, D	Verteilung (vgl. Tab. 11)
10, 11	Cy-iPr-(9:1)	92	brauner Honig		nicht getrennt
12-14	Cy-iPr-(9:1)	1851	teilw. krist.	B u. andere	908 mg Kristalle Genin B
15	Cy-iPr-(9:1)	555	gelbes Öl		nicht getrennt
16	Cy-iPr-(9:1)	255	brauner Honig		nicht getrennt
17, 18	Cy-iPr-(9:1)	272	teilw. krist.	F u. andere	45 mg gelbl. Krist. Reinigung an SiO ₂
19	Cy-iPr-(9:1)	174	brauner Honig		nicht getrennt
20	Cy-iPr-(9:1)	99	teilw. krist.		nicht getrennt
21, 22	Cy-iPr-(9:1)	82	brauner Honig		nicht getrennt
23, 24	Cy-iPr-(9:1)	273	gelber Honig		nicht getrennt
2527	Cy-iPr-(9:1)	613	teilw. krist.	E (G) u. andere	198 mg gelbl. Krist. Reinigung an SiO.
28-36	Cy-iPr-(9:1)	766	gelber Schaum	G (E) u. andere	Chrom an SiO ₂ (s. Tab. 10)
37-42	Cy-iPr-(9:1)	220	brauner Honig		nicht getrennt
43-57	Cy-iPr-(4:1)	460	brauner Schaum		nicht getrennt
58-78	Cy-iPr-(7:3)	787	brauner Schaum		nicht getrennt
79-90	Me	1300	brauner Schaum		nicht getrennt
	Tota	1 9630			

Tabelle 9. Trennung von 10,5 g Geningemisch aus dem Ae-Extr. an 1,9 kg SiO₂

Die Fr. 25–27 von Tab.9 gaben aus Ae 198 mg rohes Genin E in gelblichen Kristallen. Sie wurden zur Reinigung noch an 120 g SiO_2 (Mek-Be-(1:1)) chromatographiert. Man erhielt 167 mg farbloses Material, das aus An-Pn 140 mg reines Genin E vom Smp. 190–196° gab.

Die Fr. 28–36 von Tab. 9 (766 mg) wurden mit den Fr. 25–28 (435 mg) aus dem 2. Versuch vereinigt und an SiO_2 nach Duncan [42] chromatographiert. (vgl. Tab. 10)

2. Versuch. 11,4 g Geningemisch wurden an 2,05 kg SiO_2 , genau wie oben, getrennt und gaben 661 mg krist. Genin B und 120 mg krist. Genin E, daneben noch 435 mg E- und G-Gemisch, das für die nächste Chromatographie (Tab. 10) diente.

Die Fr. 53-62 von Tab. 10 (117 mg) gaben aus An-Pn 39 mg krist. Genin E vom Smp. 187-197°. Die Fr. 114-214 von Tab. 10 (347 mg) gaben aus An-Pn 90 mg nicht ganz einheitliche Kristalle von Genin G, Smp. 226-229°. Im DC. (Mek-Be-(3:2)) zeigten sie noch einen schwachen Fleck höherer Polarität. Umkristallisation aus An-Pn lieferte 40 mg reines Genin G in farblosen Kristallen vom Smp. 228-230°. Die erste ML (257 mg) wurde nicht weiter gereinigt, sondern mit Pt in AcOH hydriert [33]. Die relativ reine, beim Umkristallisieren der Rohkristalle angefallenen ML. (50 mg) wurde mit Ac₂O in Py acetyliert (siehe unten).

Präparative Trennung von 1,1 g Geningemisch (A, C, D) der Fr. 8 und 9 von Tab.9 durch Verteilungschromatographie [53] [54] an Cellulose. 1,1 kg Cellulosepulver³⁷) wurden nach früherer Vorschrift [52] [53] gereinigt und getrocknet. 1 kg dieser Cellulose wurde mit 352 ml Mmf und 1,5 l An vermischt, 30 Min. maschinell durchmischt und anschliessend bei 12 Torr und 60° getrocknet. Die imprägnierte Cellulose wurde im Lösungsmittel (Thf-Be-Cy-(1:1:7)) gesättigt, mit Mmf aufgeschwemmt, homogenisiert und in die mit demselben Lösungsmittel gefüllte Säule gestopft. – Die 1,1 g Geningemisch wurden in Chf gelöst, mit 10 g imprägnierter Cellulose vermischt, im Vakuum bei 30° getrocknet und dann auf die Säule gepresst, worauf sofort mit der Chromatographie begon-

³⁷⁾ Cellulose, Typ HL 600, Mikro-Technik, Miltenberg, BRD.

			E 3		
FrNr.	Lösungsmittel	Eindar	npfrückstand		
	46 ml/Fr./ 55 Min.	Menge in mg	Habitus	Zusammen- setzung	weitere Verarbeitung bzw. isolierte Kristalle
1- 52	Mek-Be-(3:2)	45	gelb-brauner Honig		nicht getrennt
53- 62	Mek-Be-(3:2)	117	teilw. krist.	E u. andere	38 mg Krist. Genin E
63-113	Mek-Be-(3:2)	159	gelb-brauner Honig		nicht getrennt
114-214	Mek-Be-(3:2)	347	gelber Schaum	G u. andere	90 mg Krist. Genin G
215-330	Mek-Be-(3:2)	148	brauner Honig		nicht getrennt
331-380	Mek-Be-(4:1)	225	brauner Honig		<u> </u>
381-420	An	50	gelbes Öl		nicht getrennt

Tabelle 10. Chromatographie von 1,2 g rohem E-G-Gemisch aus beiden Versuchen an 1 kg SiO_2 nach Duncan [42]

nen wurde. Ungefähr jede 10. Fr. von Tab.11 wurde im PC. untersucht. Fr. gleicher Zusammensetzung wurden vereinigt, im Vakuum bei 45° weitgehendst eingeengt, in 15 ml Chf aufgenommen und zur Entfernung des Mmf einmal mit 20 ml 10-proz. KHCO $_3$ -Lösung und 3mal mit 20 ml W gewaschen. Die wässerigen Phasen wurden 3mal im Gegenstrom mit je 15 ml Chf ausgeschüttelt. Die vereinigten Chf-Auszüge trocknete man über Na $_2$ SO $_4$ und dampfte sie im Vakuum ein.

Total 1091

Tabelle 11. Verteilungschromatographie von 1,1 g Geningemisch (A,C,D) der Fr.8 und 9 von Tab.9 an 1 kg Cellulose

FrNr.	Lösungsmittel Thf-Be-Cy-(1:1:7) ³⁸) 40 ml/Fr./2 Std.	Eindampfrückstand				
		Menge in mg	Habitus	Flecke im PC.	weitere Verarbeitung	
1- 89	Thf-Be-Cy-(1:1:7)	33	gelbes Öl			
90-144	Thf-Be-Cy-(1:1:7)	279	brauner Honig	A, C		
145-165	Thf-Be-Cy-(1:1:7)	108	brauner Honig	A, (C)		
166-206	Thf-Be-Cy- $(1:1:7)$	16	brauner Honig	A, D		
207-212	Thf-Be-Cy- $(1:1:7)$	4	brauner Honig	D		
213-238	Thf-Be-Cy-(1:1:7)	86	brauner Honig	D	Sublimation	
239–262	Thf-Be-Cy-(1:1:7)	145	hellbrauner Honig, der nach einiger Zeit kristallisierte	D.	25 mg gelb-braune Kristalle ML. an SiO ₂ chromat.	
263-286	Thf-Be-Cy-(1:1:7)	89	dunkelbrauner	D D	(s. Tab. 12)	
203-200	1111-10-Cy-(1.1.1)	09	Honig	D	Reinigung an Al ₂ O ₃	
287–306	Thf-Be-Cy-(1:1:7)	10	dunkelbrauner Honig	(D)		
307–397	Thf-Be-Cy-(1:1:7)	42	dunkelbraune feste Subst.			
	Total	812				

Die Fr. 213–238 (86 mg) von Tab.11 wurden im Molekularkolben bei 0.02 Torr zuerst bis auf 160° (Ölbadtemp.) erhitzt; dabei destillierten 30 mg gelber Honig. Weiteres Erhitzen auf 180° lieferte kein Destillat mehr. Der Kolbenrückstand (43 mg) war tiefbraun gefärbt. Die Untersuchun-

³⁸⁾ Eluiermittel gesättigt mit Monomethylformamid.

gen des destillierten Materials im PC. (Thf-Be-Cy-(1:1:7)/Mmf) ergaben, dass es hauptsächlich aus der Komponente D bestand. Neben dieser trat aber noch ein neuer, schneller laufender Fleck auf, der vor der Destillation nicht vorhanden war. Der Destillationsrückstand bestand aus Zersetzungsprodukten, die Komponente D war darin nur noch spurenweise vorhanden.

Die Fr. 263–286 (89 mg) von Tab. 11 wurden an 6 g Al₂O₃ (Woelm, neutral, Akt. II) chromatographiert. Als Lösungsmittel wurde Be mit steigenden Zusätzen von Ae verwendet. Der grösste Teil der Substanz wurde mit Be-Ae-(95:5) und Be-Ae-(9:1) eluiert. Man erhielt 54,2 mg fast farblosen Materials, das sich nach einiger Zeit wieder gelb färbte. Im PC. (Thf-Be-Cy-(1:1:7)/Mmf) war die Subst. nicht einheitlich. Es zeigte sich neben der Komponente D ein neuer Fleck, der in den Systemen Thf-Be-Cy-(1:1:7)/Mmf und Thf-Hep-(1:9)/Pgl die Laufstrecke der Komponente A zeigte.

Die Fr. 239–262 (145 mg) von Tab. 11 gaben aus Ae-Pn in Gegenwart von etwas Feuchtigkeit 25 mg Genin D als gelb-braun gefärbte Kristalle vom Smp. 78–86°. 80 mg ML, wurden an 50 g Kieselgel mit $\mathrm{CH_2Cl_2\text{-}Me\text{-}}(97:3)$ chromatographiert (vgl. Tab. 12).

FrNr.	Lösungsmittel 8 ml/Fr./25 Min.	Eindampfrückstand			
		Gewicht in mg	Habitus	weitere Verarbeitung	
1-11	CH ₂ Cl ₂ -Me-(97:3)	_			
12	$CH_{2}Cl_{2}-Me-(97:3)$	3	gelbes Öl		
13–19	CH ₂ Cl ₂ -Me-(97:3)	53	farbl. Schaum (Zers.)	27 mg gelbl. Kristalle Subst. D, Smp. 88–92°	
20-35	$\mathrm{CH_2Cl_2\text{-}Me}\text{-}(97:3)$	14	gelber Schaum		
	Total 70				

Tabelle 12. Chromatographie von 80 mg M1. der Fr. 239-262 von Tab. 11 an 50 g SiO₂

Die Fr. 13–19 (53 mg) von Tab. 12 gaben nach dem Eindampfen einen farblosen Schaum, der sich während 12 Std. gelb verfärbte. Aus Ae-Pn und etwas Feuchtigkeit erhielt man 27 mg $Genin\ D$ als gelbliche Kristalle vom Smp. 88–92°, die sich nach einigen Wochen stark dunkel färbten. Nach einem Jahr war darin kein D mehr nachweisbar.

Beschreibung der isolierten Stoffe und einiger ihrer Derivate. – 1. Hirundigenin (E) (Präp.~KST-5). Aus An-Pn farblose Nadeln, Smp. 190–196° (Zers., Gelbfärbung); $[\alpha]_1^{24} = -44.8^{\circ} \pm 2^{\circ}$ (e=1,217 in Chf). UV.-Spektrum Fig.10, IR.-Spektrum Fig.15, MS. Fig.22 in [33], NMR.-Spektrum vgl. Fig.4 in [34]. Farbreaktionen mit SbCl₃, p-Toluolsulfonsäure und H_2SO_4 , vgl. Tab.5a und b. Weitere Farbreaktionen mit Gruppennachweischarakter vgl. Tab.4. Das reine Präparat war mindestens 2 Jahre beständig. Zur Analyse wurde 5 Std. bei 0,01 Torr und 20° über P_2O_5 getrocknet.

$$C_{21}H_{30}O_5$$
 (362,47) Ber. C 69,58 H 8,34% Gef. C 69,78 H 8,44%

20,756 mg Subst. verbr. in 2 ml AcOH (vorhydriertes PtO₂) ³⁹) 2,57 ml H₂ (0°, 760 Torr) entspr. 2,00 Mol-Äquiv., schon nach 15 Min. konstant.

Prüfung auf Beständigkeit gegen Säure. 3,4 mg Hirundigenin wurden in 2 ml Me und 2 ml 0,1 n $\rm H_2SO_4$ 25 Min. unter Rückfluss gekocht. Übliche Aufarbeitung gab 3,2 mg farblosen Schaum. Dieser enthielt nach DC. (Eg-Cy-(3:2)) ca. 90% Anhydrohirundigenin und ca. 10% unverändertes Hirundigenin.

3-O-Acetyl-hirundigenin (Präp. KST-10). 46 mg Hirundigenin wurden in 2 ml abs. Py und 1,6 ml Λc_2 O 7 Std. bei 20° stchengelassen. Die übliche Aufarbeitung gab 45 mg Rohprodukt. Aus Me 23 mg farblose Blättchen, Smp. 168–178° (Zers. unter Gelbfärbung); $[\alpha]_{364}^{20} = -147,0^{\circ}$; $[\alpha]_{405}^{20} = -109,4^{\circ}$; $[\alpha]_{436}^{20} = -89,6^{\circ}$; $[\alpha]_{546}^{20} = -50,2^{\circ}$; $[\alpha]_{578}^{20} = -43,9^{\circ}$; $[\alpha]_{589}^{20} = -41,8^{\circ} \pm 3^{\circ}$ ($c = -109,4^{\circ}$); $[\alpha]_{689}^{20} = -109,4^{\circ}$; $[\alpha]_{689}^{20} = -109,4^{\circ}$;

³⁹) Apparatur nach Clauson-Kaas & Limborg [55].

0,5579 in Chf) 40). UV.-Spektrum Fig.11, 1R.-Spektrum Fig.16, NMR.-Spektrum Fig.5 bei |34|. Das reine Präparat war über 2 Jahre lang haltbar. Zur Analyse wurde wie oben getrocknet.

$$C_{23}H_{32}O_6$$
 (404,51) Ber. C 68,29 H 7,97% Gef. C 68,15 H 8,07%

2. Anhydrohirundigenin (B) (Präp. KST-I). Aus Me farblose Nadeln, Smp. 212–217° (Zers. Gelbfärbung), $[\alpha]_0^{25} = -25.8 \pm 3^{\circ}$ (c = 0.65 in An). UV.-Spektrum Fig. 10, IR.-Spektrum Fig. 12, MS. Fig. 20 in [33], NMR.-Spektrum vgl. Fig. 6 in [34]. Farbreaktionen vgl. Tab. 5a und b. Die Reaktion mit Tetranitromethan (vgl. S. 190 bei [56]) gab starke Gelbfärbung. Die reinen Kristalle waren über 2 Jahre haltbar. Nach Zeisel-Bestimmung methoxylfrei und nach O-Acetylbestimmung (mit saurer Verseifung) acetoxylfrei. Zur Analyse wurde 2 Std. bei 0,01 Torr und 60° über P_2O_5 getrocknet.

$$C_{21}H_{28}O_4$$
 (344,45) Ber. C 73,22 H 8,19% Gef. C 73,08 H 8,38%

20,962 mg Subst. verbr. in 2 ml AcOH (vorhydriertes PtO₂)³⁹) nach 24 Std. 1,748 ml H₂ (0°, 760 Torr) entspr. 1,28 Mol-Äquiv. Präparative Aufarbeitung vgl. [33], dort auch weitere Hydrierungsversuche.

3-O-Acetyl-anhydrohirundigenin (Präp. KST-3). 21 mg Anhydrohirundigenin wurden in 1 ml abs. Py und 0,8 ml Ac₂O 7 Std. bei 20° stehengelassen. Die übliche Aufarbeitung gab 21 mg Rohprodukt, aus Me 11 mg farblose Nadeln, Smp. 156-158°; $[\alpha]_{364}^{20} = -46,5^{\circ}$; $[\alpha]_{406}^{120} = -55,1^{\circ}$; $[\alpha]_{646}^{20} = -33,6^{\circ}$; $[\alpha]_{678}^{20} = -31,0^{\circ}$; $[\alpha]_{689}^{20} = -30,1^{\circ} \pm 3^{\circ}$ (c = 0,5807 in An). Der Stoff ist beim Lagern nicht beständig, die Kristalle begannen sich nach mehreren Wochen gelbgrün zu färben. Die Spektren und Analysen wurden mit dem frisch bereiteten Präparat aufgenommen. UV.-Spektrum Fig.11, IR.-Spektrum Fig.13, NMR.-Spektrum vgl. Tab.1 in [34]. Zur Analyse wurde bei 0,01 Torr 12 Std. bei 20° und 2 Std. bei 50° über P_2O_5 getrocknet.

p-Brombenzoyl-anhydrohirundigenin (Präp. KST-40). 56 mg Anhydrohirundigenin in 0,8 ml abs. Chf und 0,3 abs. Py wurden unter H_2O -Ausschluss bei 0° mit der Lösung von 183 mg krist. p-Brombenzoylchlorid in 1,5 ml abs. Ae versetzt und 7 Std. bei 20° stehengelassen. Anschliessend wurde mit 0,2 ml Me versetzt und noch 2 Std. stehengelassen. Nach Zusatz von 2 ml Be wurde im Vakuum bei 20° eingedampft und dies noch 2mal wiederholt. Übliche Aufarbeitung mit Chf gab 188 mg neutrales Rohprodukt. Aus An-Me 58 mg farblose feine Nadeln, Smp. 244° (Zers.). Die ML. (130 mg) wurde an 60 g SiO₂ chromatographiert. Die ersten Fraktionen gaben 78 mg p-Brombenzoesäure-methylester, Smp. 75–76°, die späteren lieferten noch 16 mg p-Brombenzoesaure-methylester, Smp. 75–76°, die späteren lieferten noch 16 mg p-Brombenzoyl-anhydrohirundigenin. – Rekristallisation des reinen Materials aus An-Me gab farblose Nadeln, Smp. 244–248° (Zers., Gelbfärbung); $[\alpha]_{364}^{20} = +47.7^{\circ}$; $[\alpha]_{405}^{20} = +20.8^{\circ}$; $[\alpha]_{436}^{20} = +12.9^{\circ}$; $[\alpha]_{546}^{20} = +2.0^{\circ}$; $[\alpha]_{578}^{20} = +1.0^{\circ}$; $[\alpha]_{589}^{20} = +0.6^{\circ} \pm 3^{\circ}$ (c=0.5073 in Chf) 40). Zur Züchtung guter Einkristalle für die kristallographische Untersuchung [35] wurde langsam aus Be-An-Me kristallisiert, wobei nur relativ wenig Methanol sehr langsam zugefügt wurde. – Die reinen trockenen Kristalle waren gut haltbar, die Lösungen zersetzten sich nach einigen Monaten unter Gelbfärbung. UV.-Spektrum Fig. 11, 1R.-Spektrum Fig. 14, MS. Fig. 21 in [33].

$$C_{28}H_{31}BrO_5$$
 (527,53) Ber. Br 15,15% Gef. Br 15,37%

Anhydrohirundigenin aus Hirundigenin. 15 mg Hirundigenin wurden bei 0,01 Torr und 160 bis 170° Badtemperatur im Molekularkolben sublimiert, wobei kein Rückstand verblieb. Das farblose Sublimat war nach DC. ein Gemisch von B und E. Es wurde noch zweimal analog sublimiert, worauf praktisch reines Anhydrohirundigenin (B) vorlag. Nach DC. (Eg-Cy-(3:2)), Mischprobe, spez. Drehung und IR.-Spektrum identisch mit Präp. KST-1.

3. Vincetogenin (G) (Präp. KST-23). Aus An-Pn farblose kleine Blättchen, Smp. 228-230° (Zers., Gelbfärbung); $[\alpha]_{364}^{20} = -301.2^{\circ}$; $[\alpha]_{400}^{20} = -207.5^{\circ}$; $[\alpha]_{430}^{20} = -167.4^{\circ}$; $[\alpha]_{646}^{26} = -89.2^{\circ}$; $[\alpha]_{570}^{20} = -79.2^{\circ}$; $[\alpha]_{680}^{20} = -75.9^{\circ} \pm 3^{\circ}$ (c = 0.4481 in Me)⁴⁰). UV.-Spektrum Fig. 10, 1R.-Spektrum Fig. 18, MS. Fig. 24 in [33], NMR.-Spektrum Fig. 15 in [34]; Farbreaktionen in Tab. 5 a und b.

⁴⁰⁾ Wir danken Frl. Dr. R. REUBKE und Herrn P. BADER, Analyt. Labor der CIBA AKTIENGESELL-SCHAFT, Basel, auch hier bestens für die Bestimmung dieser Drehung. Dazu diente ein CARL-ZEISS-lichtelektrisches-Präzisionspolarimeter 0,005°.

Das reine Präparat war beim Lagern haltbar. Lösungen färbten sich nach einigen Wochen gelb. Zur Analyse wurde 12 Std. bei 0.01 Torr und 50° über P_2O_5 getrocknet.

$$C_{21}H_{28}O_6$$
 (376,45) Ber. C 67,00 H 7,50% Gef. C 67,13 H 7,51%

9,858 mg Subst. verbr. in 1 ml AcOH (vorhydriertes PtO₂)³⁹) nach 5 Std. (schon vorher konstant) 1,36 ml H₂ (0°, 760 Torr) entspr. 2,32 Mol-Äquiv. Präparative Aufarbeitung vgl. [33].

Prüfung auf Beständigkeit gegen Säure. 0,8 mg Vincetogenin wurde in 1 ml Me und 1 ml 0.1 m H_2SO_4 25 Min. unter Rückfluss gekocht. Die übliche Aufarbeitung gab ca. 0,7 mg gelblichen Sirup. Dieser enthielt nach DC. (vgl. Fig. 2A) noch ca. 75% Ausgangsmaterial und 2 höher polare Stoffe.

Di-O-acetyl-vincetogenin (Präp. KST-24). 50 mg Vincetogenin (ML., die beim Umkristallisieren der rohen Kristalle anfiel) wurden in 2 ml abs. Py und 1,6 ml Ac₂O 11 Std. bei 20° stehengelassen. Die übliche Aufarbeitung gab 65 mg neutrales Rohprodukt als gelbliche kristalline Masse, das an 35 g SiO₂ chromatographiert wurde. Die nach PC. reinen Fr. gaben aus Chf-Pn 40 mg farblose Kristalle, Smp. 251–258° (Zers., Gelbfärbung); $[\alpha]_{544}^{20} = +41,9^{\circ}$; $[\alpha]_{405}^{20} = +1,7^{\circ}$; $[\alpha]_{549}^{20} = -8,4^{\circ}$; $[\alpha]_{549}^{20} = -10,1^{\circ}$; $[\alpha]_{589}^{20} = 0,0^{\circ} \pm 4^{\circ}$ ($\epsilon = 0.2980$ in Chf). IR.-Spektrum Fig. 19, MS. Fig. 25 in [33], NMR.-Spektrum Fig. 16 in [34]. Auch hier war das reine Präparat beim Lagern haltbar. Zur Analyse wurde 10 Std. bei 0,01 Torr und 50° über P₂O₅ getrocknet.

$$C_{95}H_{32}O_8$$
 (460,53) Ber. C 65,20 H 7,00% Gef. C 64,93 H 7,23%

4. Hirundosid-A (F) (Präp. KST-22). Aus Mc farblose Nadeln, Smp. 207–212° (Zers., Gelbfärbung); $[\alpha]_{364}^{20} = -183.3^{\circ}$; $[\alpha]_{405}^{20} = -146.1^{\circ}$; $[\alpha]_{436}^{20} = -125.2^{\circ}$; $[\alpha]_{546}^{20} = -77.5^{\circ}$; $[\alpha]_{578}^{20} = -68.6^{\circ}$; $[\alpha]_{589}^{20} = -65.6^{\circ} \pm 4^{\circ}$ (c = 0.3354 in An). UV.-Spektrum Fig. 10, IR.-Spektrum Fig.17, MS. Fig. 23 in [33], NMR.-Spektrum vgl. Fig. 13 in [34]. Farbreaktionen Tab. 5a und b. Das Präparat war beim Lagern nicht haltbar, die Kristalle färbten sich nach einigen Wochen leicht und nach einigen Monaten stark gelbgrün. Die Spektren und die Analyse wurden mit dem frischen Material ausgeführt.

$$C_{28}H_{40}O_7$$
 (488,63) Ber. C 68,83 H 8,25% Gef. C 69,09 H 8,39%

Saure Hydrolyse von Hirundosid-A. 8 mg Hirundosid-A wurden in 3 ml Me gelöst, mit 3 ml 0,1N wässeriger H₂SO₄ versetzt und 25 Min. unter Rückfluss gekocht. Übliche Aufarbeitung [23] gab 5,9 mg rohes Geningemisch und 2,1 mg rohen Zuckersirup. – Das rohe Geningemisch war eine gelbliche-grüne, teilw. krist. Masse. Aus Me wurden 1,5 mg Kristalle vom Smp. 192–210° (Zers., Gelbfärbung) erhalten, die nach Mischprobe und DC. identisch mit Anhydrohirundigenin waren. – Der Zuckersirup war nach PC. in zwei Systemen [24] identisch mit Oleandrose.

5. Substanz D (Präp. KST-2). Aus Ae-Pe in Gegenwart von etwas Feuchtigkeit leicht gelbliche Kristalle, Smp. 88–92°. Das UV.-Spektrum in Alk zeigt im kurzwelligen Teil eine Endabsorption bei 196 nm ($\varepsilon=12500$), was mehr als einer isolierten (3-fach substituierten) Doppelbindung entspricht; bei ca. 210 nm eine Schulter ($\varepsilon=7900$), sowie Maxima bei 283 nm ($\varepsilon=141$) und 352 nm ($\varepsilon=251$), alles berechnet auf ein willkürlich angenommenes Mol-Gewicht von 350. Die langwellige Absorption könnte der gelblichen Verunreinigung entsprechen. Die Schulter bei 210 nm und das Maximum bei 283 nm würden relativ gut mit dem Spektrum des Iso-dihydro-anhydrohirundigenins (Fig. 10) übereinstimmen. IR.-Spektrum vgl. Fig. 20. Das Präparat begann sich schon nach wenigen Stunden zu zersetzen und färbte sich bald gelb.

LITERATURVERZEICHNIS

- [1] K. Stöckel, H. Hürzeler & T. Reichstein, Helv. 52, 1086 (1969).
- [2] G. Hegi, Flora von Mitteleuropa, Vol. 3, 2068–2073 (C. Hansen, München 1927).
- [3] H. P. Fuchs, Verh. naturf. Ges. Basel 72, 343 (1961).
- [4] R. Ross, Acta bot, neerl. 15, 147-161 (1966).
- [5] International Code of Botanical Nomenclature 1961, Regnum Vegetabile, Vol. 23, Utrecht.
- [6] P. DONADILLE, Naturalia Monspeliensia, Ser. Bot. 16, 17-42 (1965); vgl. auch Bull. Soc. bot. France 111, 351 (1964).
- [7] A. Borhidi & S. Priszter, Acta bot. Acad. Sci. Hung. 12, 241-254 (1966).
- [8] F. Ehrendorfer, «Systematik und Evolution der Samenpflanzen», in Fortschritte der Botanik 29, 237-303, Springer-Verlag Berlin, Heidelberg, New York 1967.
- [9] C. Wehmer, Die Pflanzenstoffe 2. Aufl. II, 1004 (G. Frichey, Jena 1931).

- [10] R.GAGER & L.ZECHNER, Arch. Pharmaz. Ber. dtsch. pharmaz. Ges. 276, 431 (1938).
- [11] L. ZECHNER & J. KELLERMAYR, a) Scientia pharmac. (Wien) 21, 81 (1953); b) iidem, ibid. 21, 153 (1953); c) L. ZECHNER, ibid. 22, 254 (1954); d) idem, ibid. 34, 279 (1966).
- [12] J. KELLERMAYR & L. ZECHNER, Scientia pharmac. (Wien) 21, 161 (1953).
- [13] E. Pfeifer, Scientia pharmac. (Wien) 22, 1 (1954).
- [14] a) F. Korte, Angew. Chem. 66, 562 (1954); b) Chem. Ber. 88, 1527 (1955); c) F. Korte & I. Korte, Z. Naturforsch. 10b, 223 (1955); d) F. Korte & J. Ripphahn, Liebig. Ann. Chem. 621, 58 (1959); e) F. Korte, H. Barkemeyer & I. Korte, Neuere Ergebnisse der Chemie pflanzlicher Bitterstoffe, in Fortschr. Chem. organ. Naturstoffe (Herausg. L. Zechmeister) 17, 124 (bes. 137), Springer-Verlag, Wien 1959.
- [15] A.TRITTLER, «Über die Inhaltsstoffe von Vincetoxicum officinale Mönch», Diss. Eberhard-Karls-Universität, Tübingen 1961.
- [16] F. Kozjek & Ph. Lebreton, C. r. hebd. Séances Acad. Sci. [D] 264, 2409 (1967).
- [17] M. PAILER & W. STREICHER, Monatsh. Chem. 96, 1094 (1965).
- [18] a) A. HÁZNAGY, L. TÓTH & K. SZENDREI, Pharmazie 20, 649 (1965); b) L. FERENCZY, J. ZSOLT, A. HÁZNAGY, L. TÓTH & K. SZENDREI, Acta microbiol. Acad. Sci. Hung. 12, 337 (1966) (Chem. Abstr. 65, 1032 h (1966)).
- [19] a) P. R. O. Bally, K. Mohr & T. Reichstein, Helv. 34, 1740 (1951); b) J. v. Euw, H. Hess, P. Speiser & T. Reichstein, Helv. 34, 1821 (1951).
- [20] D.L. Kedde, Pharmac. Weekbl. 82, 741 (1947); I.E. Bush & D. A. H. Taylor, Biochem. J. 52, 643 (1952).
- [21] P. Bellet, Ann. pharmac. franc. 8, 471 (1950); M. Pesez, ibid. 10, 104 (1952).
- [22] G.M. BARTON, R. S. EVANS & J. A. F. GARDNER, Nature 170, 249 (1952).
- [23] S. RANGASWAMI & T. REICHSTEIN, Helv. 32, 939 (1949).
- [24] O. Renkonen & O. Schindler, Helv. 39, 1490 (1956).
- [25] U. Eppenberger, H. Kaufmann, W. Stöcklin & T. Reichstein, Helv. 49, 1492 (1966).
- [26] P. STUDER, S. K. PAVANARAM, C. R. GAVILANES, HORST LINDE & K. MEYER, Helv. 46, 23 (1963).
- [27] C.W. Shoppee & T. Reichstein, Helv. 23, 975 (1940).
- [28] H. KILIANI, Ber. deutsch. chem. Ges. 63, 2866 (1930).
- [29] A. GAMP, P. STUDER, H. LINDE & K. MEYER, Experientia 18, 292 (1962).
- [30] R. Neher & A. Wettstein, Helv. 34, 2278 (1951); D. Lawday, Nature 170, 415 (1952).
- [31] a) O. Schindler & T. Reichstein, Helv. 34, 108 (1951); b) F. Kaiser, Chem. Ber. 88, 556 (1955); c) Fussn. 42) in B. Fechtig, J. v. Euw, O. Schindler & T. Reichstein, Helv. 43, 1570 (1960).
- [32] H. Allgeier, Helv. 51, 668 (1968).
- [33] K. STÖCKEL, W. STÖCKLIN & T. REICHSTEIN, 2. Mitt., Helv. 52 (1969), im Druck.
- [34] K. Stöckel, W. Stöcklin & T. Reichstein, 3. Mitt., Helv. 52 (1969), im Druck.
- [35] OLGA KENNARD, J.K.FAWCETT, D.G.WATSON and K.ANN KERR, sowie K.STÖCKEL, W.STÖCKLIN & T.REICHSTEIN, Tetrahedron Letters Nr. 35, 3799 (1968).
- [36] F. CRAMER, «Papierchromatographie», S. 149, Verlag Chemie, Weinheim 1958.
- [37] J. A. CIFONELLI & F. SMITH, Analyt. Chemistry 26, 1132 (1954); H. T. GORDON, W. THORNBURG & N. L. WERUM, ibid. 28, 849 (1956); D. F. MOWERY, ibid. 29, 1560 (1957).
- [38] R.B. Burton, A. Zaffaroni & E. H. Keutmann, J. biol. Chemistry 188, 763 (1951); W. J. Mader & R. R. Buck, Analyt. Chemistry 24, 666 (1952).
- [39] Fussn. 1) auf S.49 bei T. REICHSTEIN, Helv. 19, 29 (1936).
- [40] H. Lichti, Ch. Tamm & T. Reichstein, Helv. 39, 1933 (1956), Fussn. 34).
- [41] H. STÄHELIN, Med. Exp. 7, 92 (1962).
- [42] G. R. Duncan, J. Chromatogr. 8, 37 (1962).
- [43] E. Stahl, Angew. Chem. 73, 646 (1961); E. Stahl, «Dünnschichtchromatographie», Springer-Verlag, Berlin 1962.
- [44] E. Abisch, Ch. Tamm & T. Reichstein, Helv. 42, 1014 (1959).
- [45] A. Rheiner, A. Hunger & T. Reichstein, Helv. 35, 687 (1952).
- [46] S. M. PARTRIDGE, Nature 164, 443 (1949).
- [47] A.P. MacLennan, H.M. Randall & D.W. Smith, Analyt. Chemistry 31, 2020 (1959).
- [48] (F. Brown & L. P. Hall, Nature 166, 66 (1950).

- [49] A.G. Long, J. R. Quayle & R. J. Stedman, J. chem. Soc. 1951, 2197.
- [50] R. Consden, A. H. Gordon & A. J. P. Martin, Biochem. J. 38, 244 (1944).
- [51] K. A. JAEGGI, EK. WEISS, W. WEHRLI & T. REICHSTEIN, Helv. 50, 1201 (1967).
- [52] S. A. SIMPSON, J. F. TAIT, A. WETTSTEIN, R. NEHER, J. V. EUW, O. SCHINDLER & T. REICHSTEIN, Helv. 37, 1163 (1954) auf S. 1189.
- [53] H. HEGEDÜS, CH. TAMM & T. REICHSTEIN, Helv. 36, 357 (1953).
- [54] T. GOLAB, C. H. TRABERT, HERB. JÄGER & T. REICHSTEIN, Helv. 42, 2418 (1959).
- [55] N. Clauson-Kaas & F. Limborg, Acta chem. scand. 1, 884 (1947).
- [56] L. F. Fieser & M. Fieser, «Steroide», übersetzt von H. Grünewald, Verlag Chemie, Weinheim 1961.

129. Optisch aktive 9,9' - Spirobifluoren-Derivate

von G. Haas und V. Prelog

Organisch-chemisches Laboratorium der Eidg. Technischen Hochschule Zürich

(5. V. 69)

Summary. The optically active compounds XXIII, XXIV, and XXV, named vespirenes, have been synthetized as first examples of compounds containing a single chirality centre of the type $X(A_4)$. The analogous optically active 9,9'-spirobifluorene derivatives XXI, XXVI, and XXVIII have been prepared for comparison of their chiroptic properties with those of vespirenes.

Vor kurzem wurde in zwei Vorträgen [1] [2] die Bedeutung der Begriffe des asymmetrischen Atoms einerseits und der Chiralitätselemente – Zentren, Achsen und Ebenen [3] – andererseits behandelt. Es wurde dort hervorgehoben, dass die Verbindungen mit tetraedrischen asymmetrischen Atomen vom Typus X(ABCD) mit vier verschiedenen Liganden nur einen – allerdings praktisch besonders wichtigen – Spezialfall von chiralen Molekeln darstellen. Im allgemeinen sind aber chirale Molekeln mit zwei, drei oder sogar vier gleichen Liganden an einem tetraedrischen Atom¹) ebenfalls möglich, obwohl viel seltener verwirklicht und weniger untersucht.

Chirale Molekeln vom Typus $X(A_2B_2)$ bzw. $X(A_3B)$ bzw. $X(A_4)$ mit einem tetraedrischen Chiralitätszentrum, das mehrere gleiche Liganden trägt, weisen im Gegensatz zu Molekeln mit einem «klassischen» asymmetrischen Atom (Punktsymmetriegruppe C_1) eine höhere Symmetrie auf. Sie gehören den Punktsymmetriegruppen an, welche die chiralen Untergruppen der Punktsymmetriegruppen des regulären Tetraeders $T_{\rm d}$ darstellen, also C_2 , C_3 , $D_2 = V$ oder T. Mit Ausnahme von Molekeln, welche die Symmetrie C_2 besitzen, für die es zahlreiche Beispiele gibt, sind organische Verbindungen, deren Molekeln den erwähnten höheren Punktsymmetriegruppen angehören, selten.

Mislow et al. [5] haben erst vor einigen Jahren optisch aktive zweimal überbrückte Diphenyl-Derivate mit einer Chiralitätsachse bereitet, welche die Symmetrie D_2 aufweisen. Analoge Verbindungen mit einem Chiralitätszentrum vom Typus $X(A_4)$ waren dagegen u. W. nicht verwirklicht. Solche Verbindungen schienen uns

Solche Atome sollen unserer Ansicht nach nicht einmal in Anführungszeichen «asymmetrische Atome» (vgl. dagegen [4], S.116) genannt werden. Diese Bezeichnung soll – so wie von VAN'T HOFF vorgeschlagen – auf Atome mit vier verschiedenen Liganden, welche einen asymmetrischen Simplex bilden, beschränkt bleiben.