
SYNTHESIS OF ARYL-2-INDOLYLCARBINOL

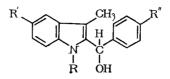
V. I. Shvedov, V. V. Alekseev, and A. N. Grinev

Among the diarylcarbinol derivatives are found compounds showing a wide spectrum of biological activity. Even benzhydrol itself is bacteriostatic [1], fungistatic, and sporostatic, and shows anti-histamine activity [2]. According to the patent literature [3] alkylaryl-2-indolylcarbinols, obtained by the interaction of 2-aroylindole with alkyl dialkyl aminomagnesium halide, are strong sedatives. It therefore seems well worthwhile to investigate the biological properties of the aryl-2-indolylcarbinols—the structural analogs of the diarylcarbinols and of the alkylaryl-2-indolylcarbinols in the directions indicated.

The derivatives of aryl-2-indolylcarbinol, which until now have been comparatively little investigated [4], have been prepared in the present investigation in high yield of reduction of the 2-aroylindoles [3, 5, 6] with zinc, in an alcoholic solution of alkali.

The stability of the aryl-2-indolylcarbinols is determined by the presence or absence of the group attached to the nitrogen atom of the indole ring. The aryl-2-indolylcarbinols which are not substituted at the nitrogen atom are unstable; they darken in the light, they are hygroscopic, whereas the aryl-2-(1-meth-ylindolyl) carbinols are quite stable.

These aryl-2-indolylcarbinols show a distinctive infrared spectrum, from which the absorption bands in the region of 1610-1620 cm⁻¹ are absent; this property is shown in the parent compounds and is related to valency oscillations of the C=O group. The strong band in the region 3490-3510 cm⁻¹ corresponds to valency oscillations of the hydroxyl group. In the ultraviolet spectra of the aryl-2-indolylcarbinols, two absorption maxima are observed, one at 230 nm (log $\varepsilon = 4.54$), and 285 nm (log $\varepsilon = 4.00$).


EXPERIMENTAL

Derivatives of Aryl-2-(3-Methylindolyl) Carbinol (Compounds I-VI). To a hot solution of 0.1 mole of 2-aroyl-3-methylindole in 500 ml of ethyl alcohol were added 100 g of zinc dust and 80 g of caustic soda. The mixture was heated on a water bath and stirred vigorously for 10 hours. Then, without cooling the solution was separated from the sediment, and poured into a mixture of ice and water. The precipitate of

Compound	R	R'	R″	Yield, %	Melting point (°C); crystal- lized from ether-pet- roleum ether	Found, %				Calculated, %		
						с	н	N	Empirical formula	с	н	N
I III IV V VI	H H CH ₃ H H H	H CH ₃ CH ₃ CH ₃ CH ₃ OCH ₃	CH ₃ H CH ₃ OCH ₃ CH ₃	94 98,5 93,2 94,3 93,8 90	146—7 87—87,5 118—9	181,16	6,81 7,37 7,14 7,14	$5,53 \\ 5,48 \\ 5,26 \\ 4,90 $	C ₁₈ H ₁₉ NO ₂	81,24 81,24 81,47 81,47 76,83 76,83	6,81 7,21 7,21 6,80	5,57 5,28 5,28 4,97

TABLE 1

S. Ordzhonikidze All-Union Scientific-Research Institute of Pharmaceutical Chemistry, Moscow. Translated from Khimiko-Farmatsevskii Zhurnal, No. 6, pp. 8-10, June, 1969. Original article submitted January 9, 1969. aryl-2-(3-methylindolyl) carbinol which formed was filtered, washed in water, and dried. Data on the derivatives obtained (V-VI) are given in Table 1.

CONCLUSIONS

In order to test for biological activity we synthesized several of the aryl-2-indolylcarbinol derivatives in high yield by reduction of 2-aroylindoles with zinc in alcoholic alkali.

LITERATURE CITED

- 1. J. E. Moore and E. Bull, Proc. Soc. Exp. Biol. (N. Y.), <u>90</u>, 259 (1955); Chem. Abstr., <u>50</u>, No. 2852 (1956).
- 2. K. Okaraki and T. Kawaguchi, J. Pharm. Soc. Jap., 72, 1400, (1952); Chem. Abstr., 47, No. 1883 (1953).
- 3. Belgian Patent No. 637355, 1964; Chem. Abstr., 62, No. 7731 (1965).
- 4. D. A. Shirley and P. A. Roussel, J. Am. Chem. Soc., 75, 377 (1953).
- 5. V. I. Shvedov, V. V. Alekseev, and A. N. Grinev, Author's Certificate, 1967, No. 215217; Izobreteniya, No. 13, 20 (1968).
- 6. V. I. Shvedov, V. V. Alekseev, and A. N. Grinev, Khim.-Farm. Zh., No. 8, 8 (1968).