Notes

TABLE	ш	(continued)
		· ·

Compound	Number or	NSC	NTL, ^b T/C, ^c		-Ca-775 or E.A NTL, 7		 /C, 7.	MTL,	.0 T/C,
Compound	boarde	10.	g./ Ag.	70	III III AB.		/0		70
5-Chloro-6-methyl	Ref. 1	26542	500	89	225	\mathbf{E}	75	450	78
5-Bromo-6-methyl	Ref. 1	53064	300	79	300	\mathbf{C}	102	300	84
5-Chloro-6-ethyl-	IVb	58562	250	86	62	\mathbf{C}	79	125	104
5-Chloro-6-propyl-	IVc	58563	250	101	125	С	77	250	92
5-Chloro-6-isopropyl-	IVd	58564	125	86	125	\mathbf{C}	78	250	87
5-Chloro-6-heptadecyl-	IVe	58565	250	73	250	\mathbf{C}	121	250	95
5-Chloro-6-phenyl-	\mathbf{IVf}	58567	250	107	250	\mathbf{C}	9 6	250	91
Methyl 5-chloroorotate	e	64341	500	81	450	С	97	450	104
	Part	B, Polychlo	propyrimidi	nes					
2.4-Dichloro-	Comm.	37531	125	87	125	Е	112	100	104
-,	avail	0.001		0.	100	Ē	147	200	
2.4-Dichloro-6-methyl-		13199	500	71	400	\bar{c}	100	500	108
2.4-Dichloro-6-ethyl-	IIIb	58568	63	101	125	Č	105	63	96
2.4-Dichloro-6-propyl-	IIIe	58569	63	75	250	Č	108	250	102
2.4-Dichloro-6-isopropyl-	IIId	58570	250	116	62	ē	95	62	97
2.4-Dichloro-6-heptadecyl-	IIIe	58571	250	93	250	Č	87	250	104
2.4-Dichloro-6-phenyl-	TTT	49018	125	104	25	Č	107	100	97
2.4.5-Trichloro-	Va	40593	31	86		Č	124	25	98
2.4.5.6-Tetrachloro-	e	35123	125	49	3.75	$\tilde{\mathbf{c}}$	37	1.9	104
2, 2, 0, 0 2 00 00 00 0	Ū	00120	30	85	24	Ĕ	78	210	101
6-Methyl-2.4.5-trichloro-	Ref. 1	26541	500	72	450	\tilde{c}	54	450	111
o 1.100mg1 _ ,1,0 0.10mo10	10011 1	20011	000		100	Ē	f	100	***
6-Bromomethyl-2 4 5-trichloro	Ref 1	30721	10	47	7	Ē	131	7	100
	10011 1	00121	10	70	•	Ē	85	•	100
6-Ethyl-2 4 5-trichloro-	Vb	58573	16	95	31	č	91	62	105
6-Propyl-2 4 5-trichloro-	Ve	58574	63	60	31	č	78	62	102
6-Isopropyl-2 4 5-trichloro-	Vd	58575	21	68	31	č	117	62	100
6-Heptadecyl-2.4.5-trichloro-	Ve	58576	250	126	250	č	120	250	104
6-Phenyl-2.4.5-trichloro-	Vf	53184	63	128	15	č	71	250	88
4-Carbomethoxy-2.5.6-trichloro-	Ref 12	00101	8	48	10	0	11	200	00
		64342	$\frac{1}{2}$	106	2	С	129	2	97

^a We are indebted to Dr. Howard Bond, Cancer Chemotherapy, National Service Center, NIH, Bethesda 14, Md., for making these data available to us. The details of the screening procedures can be found in ref. 12. ^b NTL = maximum non-toxic level. ^c T/C = treated tumor/control tumor. ^d C = Carcinoma-755; E = Ehrlich ascites. ^e H. Gershon, J. Org. Chem., 27, 3507 (1962). ^f Test results on Ehrlich ascites from 3 laboratories:

Lab	······									~		3			
NTL	450	450	450	450	450	450	750	600	450	225	750	600	450	225	225
T/C	42	16	20	32	5	34	2	27	0	49	87	78	103	83	116

(12) CCNSC Specifications for Screening Chemical Agents and Natural Products Against Animal Tumours, compiled by Drug Evaluations Branch, Cancer Chemother. Rep., 1, 12 (1959).

acetic acid. About 50-100 mg. of ferric chloride was added, and the solution was brought to near boiling. Sulfuryl chloride (23.0 g., 0.17 mole) was added dropwise with agitation. Upon completion of addition of the sulfuryl chloride, the solution was heated under reflux till no more hydrogen chloride was evolved. The mixture was allowed to cool to room temperature with agitation and 53 g. of product was obtained after filtration and washing with water and acetone. The yield was 89%, m.p. $204-210^{\circ}$. An analytical sample was crystallized from methanol, m.p. $210-211.5^{\circ}$.

2,4-Dichloro-6-*n*-heptadecylpyrimidine (IIIe).—A mixture of 35.0 g. (0.1 mole) of IIe in 350 ml. of phosphorus oxychloride was heated under reflux with agitation till hydrogen chloride evolution nearly ceased. The excess phosphorus oxychloride was removed in a flash evaporator and the residue was poured into an ice-water slurry. The dichloropyrimidine was extracted with ether, which was dried, decolorized with charcoal, filtered and evaporated under vacuum. The oily residue did not distil below 190° (0.3 mm.) and could not be purified further.

6-n-Heptadecyl-2,4,5-trichloropyrimidine (Ve).—A mixture of 29.0 g. (0.075 mole) of IVe in 290 ml. of phosphorus oxychloride was treated as above. A yield of 29.2 g. (92%) of Ve was obtained which could not be distilled below 190° (0.3 mm.) or crystallized.

Antiamebic Agents. VI.¹ Analogs of Bialamicol and Related Quinolinols

J. H. Burckhalter,² Robert I. Leib,⁸ Yun Sung Chough and Raymond F. Tietz

> Laboratory of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas

Received July 11, 1962

Bialamicol is a useful antiamebic agent.^{4,5} A recent publication⁶ in which the diethylamino of bialamicol

(1) Previous paper: J. H. Burckhalter and R. I. Leib, J. Org. Chem., 26, 4078 (1961).

(2) College of Pharmacy, The University of Michigan, Ann Arbor, Mich.(3) Parke, Davis and Co. Fellow.

(4) J. H. Burckhalter, F. H. Tendick, E. M. Jones, W. F. Holcomb and A. L. Rawlins, J. Am. Chem. Soc., 68, 1894 (1946). Trade name of bialamicol: Camoform[®].

(5) P. E. Thompson, J. W. Reinertson, D. A. McCarthy, A. Bayles and A. R. Cook, Antibiotics & Chemotherapy, 8, 433 (1955); R. V. Taylor, Am. J. Gastroenterol., 26, 713 (1956).

(6) E. F. Elslager and F. H. Tendick, J. Med. Pharm. Chem., 5, 646 (1962).

(I) "is substituted with basic side chains (e.g., II) similar to those found in antiamebic agents" prompts us to report that, prior to submission of that manuscript,⁶ we had already described very promising antiamebic agents with such side chains (e.g., VII).⁷ The rationale

behind our work was the enhancement of extra-intestinal activity of intestinal amebicides (e.g., VI) through addition of a basic side chain.⁷ One of the compounds (VII) now shows promise in the clinic. The recent publication by Elslager and Tendick⁶ prompts us to report the syntheses of III and two other analogs of I (IV and V), as well as three analogs of VII (VII, IX and X).

Compounds III, IV and V were synthesized by means of the Mannich reaction from 1,1'-bis-(3-allyl-4-phenol), paraformaldehyde and the appropriate secondary amine. VIII, IX and X originated from the reaction between 5-chloro-8-quinolinol, paraformaldehyde and the appropriate 4-(2-cyclic-aminoethyl)-piperidine.⁸ Three corresponding position isomers, 2-(2-cyclicaminoethyl)-piperidines,^{8,10} failed to undergo the Mannich reaction with 5-chloro-8-quinolinol, presumably because of steric hindrance.

Compounds III, IV, V, VIII, IX and X were tested by Dr. P. E. Thompson and co-workers against Entamoeba histolytica in vitro.⁵ Respective activities expressed in γ/ml . are 200, 10, 2000, 20, 20 and 20. Compounds III and V were tested as free bases in suspension, which may explain low effectiveness. All others were screened as dihydrochlorides in solution. In vivo in rats, III and V were not promising, and IV was active but not sufficiently effective compared with bialamicol to warrant further study. VIII, IX and X were active but unlikely to be superior to 5-chloro-7-(3-diethylaminopropylaminomethyl)-8-quinolinol (KAN-322).¹¹

We wish to thank Dr. P. E. Thompson for the pharmacological results.

(8) Y. S. Chough, M.S. Thesis, University of Kansas, 1957. After these studies had been completed, the substituted piperidines were described in the literature.9

(9) A. P. Phillips, J. Am. Chem. Soc., 79, 2836 (1957).

(10) A. H. Sommers, M. Freifelder, H. W. Wright and A. W. Weston, ibid., 75, 57 (1953).

(11) J. H. Burckhalter, W. S. Brinigar and P. E. Thompson, J. Org. Chem., 26, 4070 (1961).

Experimental

6.6'-Diallyl- α , α '-bis(4-methyl-1-piperazinyl)-4.4'-bi-o-cresol (III).--A mixture of 13.3 g. (0.05 mole) of 1,1'-bis-(3-allyl-4phenol), 3 g. (0.1 mole) of paraformaldehyde, 10.2 g. (0.1 mole) of N-methylpiperazine and 75 ml. of alcohol was heated at reflux temperature for 2 hr. Removal of most of the solvent left a solid which was crystallized from isopropyl alcohol to give 15.2 g. (60% yield) of III, m.p. $138\text{-}142^\circ$. Two more recrystallizations elevated the melting point to $145\text{-}146^\circ$. III is insoluble in water but soluble in mineral acids.

Anal. Caled. for C₅₀H₄₂N₄O₂: C, 73.43; H, 8.62. Found: C. 73.41; H, 8.66.

6,6'-Diallyl- α , α '-bis-pyrrolidino-4,4'-bi-o-cresol (IV) Dihydrochloride.—A mixture of 53.2 g. (0.2 mole) of 1,1'-bis-(β -allyl-4phenol), 13 g. (0.41 mole) of paraformaldehyde, 28.5 g. (0.4 mole) of pyrrolidine and 70 ml. of alcohol was heated on a steam bath for 1 hr. Since some pyrrolidine was lost through the heat of reaction, 8 g. more was added. Heating was continued under an air current until volatile materials were removed and an oily residue remained. An ether-acetone solution was made and an excessive amount of hydrogen chloride gas was led into the solution to precipitate 101 g., a quantitative yield, of crude product, m.p. 204-210°. Recrystallization from isopropyl alcohol gave 72.4 g. (90% yield) of IV dihydrochloride, m.p. $214-215^{\circ}$

Anal. Caled. for C25H36N2O2 2HCl: C, 66.52; H, 7.58. Found: C, 66.22; H, 7.74.

6,6'-Diallyl- α , α '-bis-(hexamethyleneimino)-4,4'-bi-o-cresol (V).—Hexamethyleneimine¹² was substituted for pyrrolidine in the preceding procedure. Evaporation of volatile solvent gave a solid free base which was recrystallized three times from 2-propanol; yield, 24.3 g. (50%), m.p. 94.2-95.8°.

Anal. Caled. for C32H44N2O2: C, 78.64; H, 9.08. Found: C, 78.62; H, 9.10.

5-Chloro-7-[4-(2-pyrrolidino)-ethylpiperidinomethyl]-8-quinolinol (VIII).--A mixture of 9 g. (0.05 mole) of 4-(2-pyrrolidinoethyl)-piperidine,^{8,9} 1.8 g. (0.06 mole) of paraformaldehyde, and 100 ml. of alcohol was heated to boiling. To the mixture 9 g. (0.05 mole) of 5-chloro-8-quinolinol¹³ in 150 ml. of alcohol was added over a period of 30 min. After about 8 hr. of heating, a small amount of yellow by-product 7,7'-methylene-bis-(5-chloro-8-quinolinol) was removed by filtration. The filtrate was concentrated by heating on the steam bath under water pump vacuum. A solid residue was recrystallized from alcohol to give 5 g. (27% yield) of VIII, m.p. 135–137°. Anal. Caled. for $C_{21}H_{25}ClN_3O$: C, 67.45; H, 7.54. Found:

C, 67.32: H, 7.51.

The dihydrochloride was made by passing dry hydrogen chloride gas into an alcoholic solution of VIII, and recrystallizing from alcohol-water, m.p. 257-258° dec.

Anal. Caled. for C21H25ClN3O·2HCl·2H2O: Cl (ionie), 14.7. Found: Cl, 14.6.

5-Chloro-7-[4-(2-piperidino)-ethylpiperidinomethyl]-8-quinolinol (IX).-The procedure of VIII gave 57% yield of IX, m.p. 129.5-130.5°

Anal. Caled. for C22H30ClN3O: C, 68.10; H, 7.79. Found: C, 68.16; H, 7.86.

The dihydrochloride melted at 245-250° dec.

Anal. Caled. for C22H₃₀ClN₃O·2HCl·3H₂O: Cl (ionie), 13.8. Found: Cl, 13.9.

5-Chloro-7-[4-(2-morpholino)-ethylpiperidinomethyl]-8-quinolinol (X).—The procedure of VIII gave 66% of X, m.p. 127-128°.

Anal. Caled. for C₂₁H₂₈ClN₃O₂: C, 64.65; H, 7.23. Found: C, 64.53; H, 7.32.

The dihydrochloride melted at 260-270° dec.

Anal. Caled, for $C_{21}H_{28}ClN_3O_2 \cdot 2HCl \cdot H_2O$: Cl (ionic), 14.8. Found: Cl, 14.9.

(13) B. L. Lemke Co., Inc., Lodi, N. J.

⁽⁷⁾ J. H. Burekhalter, W. S. Brinigar and P. E. Thompson, Ann. Biochem. and Exptl. Med. (Calcutta), 20, 482 (1960); J. Org. Chem., 26, 4070 (1961); J. H. Burckhalter, V. C. Stephens, H. C. Scarborough, W. S. Brinigar, and W. E. Edgerton, J. Am. Chem. Soc., **76**, 4902 (1954).

⁽¹²⁾ L. Ruzicka, M. Kobelt, O. Häfliger and V. Prelog, Helv. Chim. Acta, 32, 544 (1949).