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Carbodithioate-terminated bis(phenylene)ethynylenes and oligo(phenyleneethynylene)s have been synthesized from TMSE-protected 4-io-
dodithiobenzoic acid ester (1) and 4-ethynyldithiobenzoic acid ester (3) via Pd-catalyzed cross-coupling reactions. TEM and spectroscopic
studies demonstrate that the reaction of 4-(phenylethynyl)dithiobenzoate with alkylamine-protected gold nanoparticles (AuNPs) produces the

corresponding organocarbodithioate-functionalized AuNPs.

Oligo(phenyleneethynylene)s (OPEs) have functioned as aThese OPE-based molecular units have featured commonly

structural mainstay in the field of molecular electroriics.
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a terminal thiol functional group, which provides the point
of attachment to macroscopic metal surfacésr nanoscopic
metal particle$:'°

Aliphatic dithiocarboxylic acid derivatives have been
shown recently to form well-packed and highly ordered self-
assembled monolayers (SAMs) on Au surfatdsithioben-
zoic acid-modified CdSe quantum dots (QDs) have been
obtained similarly via a ligand exchange protocol; these QD
functionalization reactions are milder than those established
previously for analogous thiol ligand$3The characteristic
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instability of organic carbodithioic acid and carbodithioate ||| ||| N GG

moieties, however, has thus far limited their broad application 15pe 1. Compound? Yield as a Function of Sonogashira
as metal and semiconductor surface-functionalization re- cross-Coupling Reaction Conditions

agents. For example, introducing the carbodithioic acid 1.2 equiv =—TMS
functionality through a Grignard reaction with ¢'%*24or s 19mol % Pd catalyst — s
. .. . . I o :TMS =
oxidizing a benzylic carbpn in the presence of sulfur and a @SETMS 20, 60 °C \_7 serms
strong base such as sodium methoxitié limits the range 1 2

of functional groups that can be tolerated. Furthermore,
because the carbodithioic acid group readily decomposese
thermally!t14 additional constraints are placed on reaction

solvent/base yield,
ntry catalyst (20:1) %

conditions; modification schemes, however, that rely on 1  Pd(PPhs) DMF/i-Pr.NH 83
reacting secondary amines with £8n a Au surface to 2 Pd(PPha) DMF/EtN 60

Yy amine . 3 Pd(PPhj)y DMF/i-PryNEt 48
produce structurally similar organodithiocarbamate an- Pd(PPhs), THF/i-PryNH 77
choring ligands provide one approach to circumvent these 5 Pd(PPhs):Cl, DMF/i-ProNH 45
issuest® Here we show that the combination of Sonogashira 6 Pdy(dba)s, 40 mol % P(o-tol)s DMF/i-Pr,NH 16

cross-coupling’ and the (trimethylsilyl)ethyl (TMSE) pro-
tecting group enables the straightforward elaboration of a

wide range of carbodithioate-terminated OPE compounds that Reaction of2 with 2 equiv of TBAF in THF deprotected
make possible facile Au surface modification. simultaneously the carbodithioate TMSE and ethyne TMS

TMSE is a well-known protecting group for carboxylic groups; in situ reprotection with TMSE giv8{Scheme 2).

acid and thiol8 4-iododithiobenzoic acid 2-(trimethylsilyl)-

ethyl ester 1), synthesized by oxidation of 1-benzenesulfo- _
nylmethyl-4-iodobenzene with elemental sutff and sub- Scheme 2. Synthesis of 4-Ethynyldithiobenzoic Acid
sequent reaction with (2-bromoethyl)trimethylsilane (Scheme 2-(Trimethylsilyl)ethyl Ester §)

1), is stable under ambient conditions, and provides a key . __ O {,5 1-TBAF, THF, 0°C, 10 min __ :_©_/<S
- 2. BrCH,CH,TMS, rt, 24 h SETMS

precursor for Sonogashira cross-coupling reactions. SETMS 0o 3
2 o
Scheme 1. Synthesis of 4-lododithiobenzoic Acid Compound3 serves as a key synthon for the preparation of
2-(Trimethylsilyl)ethyl Ester 1) carbodithioate-terminated OPEs (Tables 2 and 3).
1.5 equiv PhSO,N i i i
| oo PrNBT a | Tqbles 2 and 3 describe Sonqggshlra rea;tlon pro_ducts
< > \a  CHON reflx ‘< >_\302Ph obtained from1 and 3. Carbod|th|oa.te—term|nated bis-
24h 92 % (phenylene)ethynylenes were synthesized from (i) the reac-

1. 2 equiv NaOMe s
ZeivS, THEAZN (T 4 |

h

2. 2 equiv BrCH,CH,TMS, 1t, 24 o 1 SETMS Table 2. Carbodithioate-Functionalized OPEs Derived from
° Pd-Catalyzed Cross-Coupling tfwith Arylacetylene
Compounds
1.2 equiv Ar—==
Table 1 chronicles a range of Pd-catalyzed cross-coupling | S 10mol % Pd(PPhy), e s

reactions ofl with trimethylsilylacetylene. These studies and C SETMS DMF/PLNH @OT) C SETMS
related experiments suggest that Pd@ARPLNH:DMF ! 20h,60°C

provides a suitable, general catalyst:base:solvent system; note =3
that the carbodithioic acid TMSE ester was compatible with %Y Ar—= product y% ’

. . . . S
all the Sonogashira coupling reaction conditions screened O _ =) N 81

for 4-[(trimethylsilyl)ethynyl]dithiobenzoic acid 2-(trimeth-
. . S
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S
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Table 3. Carbodithioate-Functionalized

Bis(phenylene)ethynylenes Derived from Pd-Catalyzed A s e e
Cross-Coupling o8 with lodoarenes @ = O . » 4-Au
SETMS 2. C12NH,-Au, CHCI,
Ar=I| 4
10 mol % Pd(PPh,
= S 10 moI%CuE i pr— S
——< >—< _—— —<_ >—/(
SETMS DMF/i-Pr,NH (20:1) B
1.2 equiv 3 20h,60°C SETMS
entry Ar—I product yl;l)d,
S
1 ozn—©—| ozNSETMS 10 66
S
2 NC_O_' ne . - . setms 11 37
S S S
3 TMSES' C : TMSES . - . seTms 12 60

tion of substituted arylacetylene derivatives featuring electron-
releasing groups at the 4 position withTable 2) and (ii)

the reaction of iodobenzenes bearing electron-withdrawing
para substituents witi3 (Table 3). Note that these routes
provide both monocarbodithioate- ang-bis(carbodithio-
ate)-functionalized OPEs (Tables 2 and 3).

Studies that have interrogated the molecular electronic
properties of thiol-terminated OPEs motivated the synthesis aan core sizes of both types of functionalized AUNPs were
of the Table 2 and 3 target structures. For example)- nearly identical 4-Au: 2.2+ 0.4 nm;C12S-Au 2.3+ 0.4
dithiol OPEs have served as the classic molecular Au-to-Au nm) (Supporting Information). The TEM image dfAu
bridge in pioneering break junction experimefits;com-  gpqys semiordered islands, a morphology often observed for
pounds8, 9, and 12 define initial o,w-bis(carbodithioate)  5renethiol-modified AUNP&2 and core-core spacings

analogues of these structures. An additional stimulus 10 atween neighboring particles ofL.4 nm (Figure 1B).
synthesize9 derives from reports indicating that nitro-

substituted OPEs haVing terminal thiol groups can function _
as molecular-scale switches and negative differential resis-

tance (NDR) memory elemerts® Furthermore, underscor-

Figure 1. (A) Preparative scheme far-Au. (B) TEM images of
4-Au.

ing a broader motivation for fabricating the OPEs listed in o8 A Blox
Tables 2 and 3 stems from conducting-probe AFM studies 0.7
indicating that a 1,tbis(dithiocarboxylate)-4,4biphenyl s
electrode-molecule-electrode junction provides enhanced 0.6+ g
conductance with respect to an analogousHid(dithiolate)- © 05 :.' ' §
4,4-biphenyl junction® importantly, theory supports experi- 2 P kS
ment, and implicates the disparity between thiol and car- § 0.4 i
bodithioate electronic structure as the genesis of this effect. _§ d

Alkylamine-protected Au nanopatrticles (AuNPs) facilitate < °-3-,\ P 3 ST
subsequent surface modification under mild conditions 02_"-.37:'\ Wavenumber / cm”
(Figure 1A)?! Figure 1B shows a TEM image of AuNPs T T~
functionalized with 4-(phenylethynyl)dithiobenzoate that 014 LT T~ .
were derived from a ligand exchange reaction involving | T~
dodecylamine-protected AUNPE12NH,-Au)?* and depro- 0l — e S— —

. . o 300 400 500 600 700 800

tected4 (Supporting Information). After purification and Wavelength / nm

drying under vacuurmi-functionalized AUNPs4-Au) remain
redispersible in organic solvents such as CH€Ven after
months of dry storage; CHE&kolutions of4-Au evince no
precipitate formation over a time frame of several months.

For comparison, a similar ligand exchange reaction involv-
ing dodecanethiol was carried out wi@l2NH,-Au. The

Figure 2. (A) Electronic absorption spectra dfAu (—), 4 (--+),
andC12S-Au(— - —) in CHCl. (B) FT-IR spectra ofi-Au and4.

Figure 2A shows the electronic absorption spectrum of
4-Au in CHCIg; following ligand exchanged’'s m—ma*
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transition centered at 345 nm broadens and blue shifts tothat reaction of 4-(phenylethynyl)dithiobenzoate with alkyl-
340 nm while its r-zr* transition (501 nm) is obscured by  amine-protected AuNPs produces the corresponding organo-
the AuNP surface plasmon (SP) band (520 nm). FT- carbodithioate-functionalized AuNPs. (i) The prominent role
IR spectral analysis of-Au and4 (Figure 2B) confirms the  played by thiol-terminated OPEs in molecular electrofiés,
ligand exchange reaction. While these spectra are very similar(ii) studies that indicate that carbodithioate enables aug-
over the 3106-3000 (C-H stretching), 16061400 (aro- mented electronic coupling to Au relative to that provided
matic G=C stretching), and 22262200 (ethyne stretching) by thiol 1%2° and (iii) the fact that the chemistry reported
cm! energy regimes, note thdts »(CSS¥* mode at 1039  herein makes straightforward the synthesis of carbodithioate-
cm ! disappears upon binding to the Au surface (Supporting terminated oligo(phenyleneethynylene) compounds and sub-
Information). The4-Au FT-IR spectrum shows a{CSS) sequent Au surface functionalization all suggest the potential
band centered at 898 criy a weak oscillator strength,s impact for monocarbodithioate- angw-bis(carbodithioate)-
(CSS) band likely contributes to the manifold of transitions functionalized OPEs in fundamental nanoscience.
evident at~1020 cnt. These4-Au vs andv,s CSS modes
occur at frequencies similar to those reported for dithioben- ~ Acknowledgment. This work was supported by the Nano/
zoate metal complex&{Supporting Information). Bio Interface Center through the National Science Foundation
In summary, we have synthesized TMSE-protected 4-io- NSEC DMR-0425780. The authors thank the MRSEC
dodithiobenzoic acid ested) and 4-ethynyldithiobenzoic ~ Program of the National Science Foundation (DMR-00-
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carbodithioate-terminated bis(phenylene)ethynylenes and OPEs.
We have demonstrated via TEM and SpeCtrOSCOpiC studies Supporting Information Available: Synthe“c proce-

dures, characterization data, ligand exchange protocols, TEM
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