View Article Online / Journal Homepage / Table of Contents for this issue

A Simple Synthesis of γ -Anisylidene-substituted $\alpha\beta$ -Unsaturated γ -Lactams

By KIYOYUKI YAMADA,* TETSUYA KATO, and YOSHIMASA HIRATA

(Department of Chemistry, Faculty of Science, Nagoya University, Chikusa, Nagoya, Japan)

Summary The unsaturated lactams (VIIIa) and (VIIIb) have been prepared from the keto-acid (I) via four steps including an unusual dehydration of (II) to (III).

In connection with our synthetic work on anisomycin¹ we have developed a convenient method of synthesizing the unsaturated lactams (VIIIa) and (VIIIb).

The keto-acid (I),² on treatment with bromine in an etherdioxan solution, was converted into the keto-lactone (II),[†] m.p. 122-124°, ν_{max} 1790 and 1685 cm.⁻¹, in 87% yield. The keto-lactone (II) was kept under reflux for 48 hr. in acetic anhydride and toluene-*p*-sulphonic acid, and the resulting mixture, after evaporation of the acetic anhydride, was chromatographed on silicic acid to afford a yellow compound (III),† m.p. 116—118° (58%). The structure (III) for the dehydro-compound was assigned on the spectral evidence $[\nu_{max} 1795 \text{ (weak)} \text{ and } 1765 \text{ cm.}^{-1}; \lambda_{max} 360 (\epsilon 29,000) \text{ and } 241 \text{ nm} (11,000); \delta (CCl_4) 5.83 (1H, s) and 6.70 (2H, AB-type quartet, J 6.0 Hz); M⁺ 202] and chemical properties: (III) was converted into a saturated <math>\gamma$ -lactone (IV),† m.p. 49—51° (ν_{max} 1775 cm. $^{-1}$, M⁺ 206) on catalytic hydrogenation (10% Pd–C).

In order to exclude the possibility that the yellow compound is an α -pyrone derivative (VI) which would be formed from (II) via the acid-catalysed cleavage of the γ -lactone ring, followed by recyclization, the keto-acid (I)

† Satisfactory analytical data were obtained for all the new compounds. Unless otherwise stated, the i.r. and u.v. spectra were taken in chloroform and in ethanol, respectively.

CHEMICAL COMMUNICATIONS, 1969

was converted by heating in acetic anhydride into an enollactone (V), which was dehydrogenated under reflux with 10% Pd-C in p-cymene³ to afford the α -pyrone (VI),[†] m.p. 99–101° [ν_{max} 1730 cm.⁻¹; λ_{max} 352 (ϵ 19,000) and 257 nm (9100)], clearly different from (III).

On standing in an aqueous ethanolic solution saturated with ammonia, the unsaturated lactone (III) was almost quantitatively transformed into a lactam (VII), † m.p. 138-139°; v_{max} 1710 cm.⁻¹.

The lactam (VII) was readily dehydrated with toluene-psulphonic acid in refluxing benzene to give a mixture of two unsaturated lactams, which could be separated by t.l.c. on silica gel G (solvent, CH₂Cl₂-EtOH, 9:1):(VIIIa),†§ m.p. 146—148°, ν_{max} 1690 cm.⁻¹, λ_{max} (H₂O-EtOH, 1:9), 363 (e 25,000) and 247 nm (11,000); and (VIIIb),†§ m.p. 151—152°, ν_{max} 1690 cm.⁻¹, λ_{max} (H₂O-EtOH, 1:9), 355 $(\epsilon 35,000)$ and 241 nm (11,000).

Both (VIIIa) and (VIIIb) afforded a saturated lactam (IX),[†] m.p. 77-78° (vmax 1690 cm.⁻¹) on catalytic hydrogenation.

(Received, October 17th, 1969; Com. 1576.)

The open-chain form (viz. ArCH₂·CO·CH:CH·CONH₂) is also conceivable. Although decisive evidence for the cyclic structure (VII) was not obtained, the lactam form seems most likely, since: (i) on heating in beizene, (VII) could be dehydrated to give the

(V11) was not obtained, the lactam form seems most hikely, since: (i) on heating in benzene, (V11) could be dehydrated to give the lactams, (V111a) and (V111b); (ii) a sharp singlet (1H, δ 3·10, OH) and a broad signal (1H, δ *ca*. 7·5, ·CONH·) in the n.m.r. spectrum disappeared on addition of D₂O; (iii) the $M^+ - H_2O$ peak (m/e 201) was a base peak in the mass spectrum. § The absorption maxima of (V111a) and (V111b) were not affected by variation of the pH of the solutions; however, the absorption intensities of (V111b) were dependent on the pH value of the solutions: (V111a); λ_{max} (0·01n-HCl–EtOH, 1:9), 363 (ϵ 25,000) and 247 nm (11,000); λ_{max} (0·01n-HCl–EtOH, 1:9), 363 (ϵ 27,000) and 247 nm (11,000). (V111b); λ_{max} (0·01n-HCl–EtOH, 1:9), 355 (ϵ 30,000) and 240 nm (9200); λ_{max} (0·01n-NaOH–EtOH, 1:9), 355 (ϵ 42,000) and 241 nm (13,000).

¹ For the synthesis of anisomycin, see: S. Oida and E. Ohoki, Chem. and Pharm. Bull. (Japan), 1968, 16, 2086, 1969, 17, 1405;
C. M. Wong, J. Buccini, I. Chang, J. TeRaa, and R. Schwenk, Canad. J. Chem., 1969, 47, 2421.
² W. S. Johnson, A. R. Jones, and W. P. Schneider, J. Amer. Chem. Soc., 1950, 72, 2395.
³ D. Rosental, P. Grabowich, E. F. Sabo, and J. Fried, J. Amer. Chem. Soc., 1963, 85, 3971.