ISSN 1070-3632, Russian Journal of General Chemistry, 2007, Vol. 77, No. 12, pp. 2208–2209. © Pleiades Publishing, Ltd., 2007. Original Russian Text © N.I. Kharitonova, A.S. Gazizov, A.R. Burilov, M.A. Pudovik, A.I. Konovalov, 2007, published in Zhurnal Obshchei Khimii, 2007, Vol. 77, No. 12, pp. 2063–2064.

> LETTERS TO THE EDITOR

Reaction of N-(2,2-Diarylethyl)-N-methylamine Hydrobromides with Trifluoroacetic Acid

N. I. Kharitonova, A. S. Gazizov, A. R. Burilov, M. A. Pudovik, and A. I. Konovalov

Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, ul. Akademika Arbuzova 8, Kazan, Tatarstan, 420088 Russia

Received April 10, 2007

DOI: 10.1134/S1070363207120225

Recently we have developed a procedure for preparing *N*-(2,2-diarylethyl)-*N*-methylamines **Ia** and **Ib** by the reaction of resorcinol or its derivatives with α -amino acetals [1]. To assess the possibility of selective N- or O-functionalization of such compounds, we studied the reactions of amine hydrobromides **Ia** and **Ib** with acetic and trifluoroacetic acids. Compounds **Ia** and **Ib** do not react with acetic acid, whereas prolonged heating of these substances with trifluoroacetic acid yields N-acylation products **IIa** and **IIb**. Their structure was confirmed by ¹H, ¹³C NMR and IR spectroscopy, and their composition was determined by elemental analysis.

I, **II**,
$$R = H$$
 (**a**); Me (**b**).

N-[2,2-Bis(2,4-dihydroxyphenyl)]ethyl-N-methyltrifluoroacetamide IIa. A mixture of 0.40 g of compound Ia and 10 ml of trifluoroacetic acid was refluxed for 3 days. Excess acid was removed in a vacuum, and the residue was treated with diethyl ether. The light yellow crystals thus obtained were separated and dried in a vacuum to give 0.35 g (85%) of compound IIa, mp 125°C. IR spectrum, v, cm⁻¹: 1615 (CH_{arom}), 1679 (C=O), 3347 (OH). ¹H NMR spectrum (CD₃OD), δ, ppm (J, Hz): 2.61 s, 2.64 s, 2.66 s (3H, NCH₃), 3.58 m (2H, CH₂N), 4.82 m (1H, CH), 6.26–6.44 m (4H, C^{1,5}H_{arom}), 6.87–6.94 m (2H, CH⁴H_{arom}). ¹³C NMR spectrum (acetone- d_6), δ_C , ppm: 34.23 (C⁹), 36.43 (C⁷), 53.08 (C⁸), 104.02 (C¹_{arom}), 107.92 (C_{arom}^5), 116.40 (C^{11}), 118.29 (C_{arom}^3), 130.70 (C_{arom}^4), 155.76, 156.67 (C_{arom}^6), 158.30 (C_{arom}^2), 161.29 (C¹⁰). Found, %: C 54.69; H 4.35; N 3.80. C₁₇H₁₆NO₅F₃. Calculated, %: C 54.98; H 4.31; N 3.77.

N-[2,2-Bis(2,4-dihydroxy-3-methylphenyl)]ethyl-*N*-methyltrifluoroacetamide IIb was prepared similarly by heating of 0.77 g of compound Ib and 10 ml of trifluoroacetic acid. Yield 0.40 g (50%), yellow crystals, mp 105°C. IR spectrum, v, cm⁻¹: 1614 (CH_{arom}), 1674 (C=O), 3342 (OH). ¹H NMR spectrum (D₂O), δ , ppm (*J*, Hz): 1.95 s, 1.99 s, 2.04 s, 2.05 s, 2.09 s, 2.11 s (6H, C_{arom}CH₃), 2.56 s, 2.60 s, 2.68 s (3H, NCH₃), 3.58 m (2H, CH₂N), 4.86 m (1H, CH), 6.25–6.88 m (4H, C^{4,5}H_{arom}). ¹³C NMR spectrum (CD₃OD), $\delta_{\rm C}$, ppm: 9.07, 9.88 (CH₃), 34.05 (C⁹), 37.09 (C⁷), 53.70 (C⁸), 108.37 (C¹_{arom}), 114.66 (C⁵_{arom}), 119.78 (C³_{arom}), 121.21 (C¹¹), 126.22 (C⁴_{arom}), 154.43, 153.52 (C⁶_{arom}), 156.38 (C²_{arom}), 162.28 (C¹⁰). Found, %: C 57.34; H 4.97; N 3.51. C₁₉H₂₀NO₅F₃. Calculated, %: C 57.14; H 5.01; N 3.50.

The ¹H NMR spectra were taken in D_2O and CD_3OD , and ¹³C NMR spectra, in $(CD_3)_2C=O$ and CD_3OD on a Bruker Avance-600 spectrometer (600 and 150 MHz, respectively).

ACKNOWLEDGMENTS

The study was financially supported by the Russian Foundation for Basic Research, project no. 05-03-32136.

REFERENCES

 Burilov, A.R., Gazizov, A.S., Volodina, Yu.M., Pudovik, M.A., Habicher, W.D., Baer, I., Gubaidullin, A.T., Litvinov, I.A., and Konovalov, A.I., *Mendeleev Commun.*, 2005, no. 4, p. 153.