Über einige neue Platin(II)- und Palladium(II)-Komplexe mit mehrfunktionellen Thioethern

Von M. SCHMIDT und G. G. HOFFMANN

Würzburg, Institut für Anorganische Chemie der Universität

Inhaltsübersicht. Nach einem einfachen Syntheseprinzip für teilweise schon früher bekannte Trithioether werden deren Umsetzungen mit K_2PtCl_4 und K_2PdCl_4 beschrieben. Sie führen in acht Fällen zu löslichen, ringförmigen Komplexverbindungen mit zwei Metall-Schwefel-Bindungen. Zwei weitere Verbindungen, die über Metall-Stickstoff-Bindungen koordiniert sind, sind unlösliche Polymere.

On Some New Coordination Compounds of Platinum(II) and Palladium(II) with Multidendate Thioethers

Abstract. A simple synthesis is given for the formation of seven trithioethers (partly already known). Their reactions with K₂PtCl₄ and K₂PdCl₄ lead to new co-ordination compounds. In eight cases soluble, ringshaped molecules with two metal-sulphur bonds were obtained, whereas in two other cases metal-nitrogen co-ordination leads to in soluble polymeric products.

Allgemeines

Im riesigen Gebiet der Koordinationschemie fällt eine relativ stiefmütterliche Behandlung des Verhaltens polyfunktioneller Thioether gegenüber Verbindungen der d⁸-Metalle Nickel, Palladium und Platin auf (Literaturübersicht siehe [1]). Kürzlich haben wir über einige neue Platin(II)-Verbindungen dieser Art berichtet [2]). In den Produkten (monomere Komplexe) wirken die Thioether als zweizähnige Chelatliganden:

Es bedarf wohl noch vieler weiterer Experimentaluntersuchungen und theoretischer Studien, bevor allgemein gültige Gesetzmäßigkeiten erarbeitet sind, die es ermöglichen, dieses interessante "Grenzgebiet" zwischen der Chemie von Schwefelverbindungen einerseits und der d⁸-Metalle andererseits widerspruchsfrei und erschöpfend zu beschreiben.

Im folgenden berichten wir über Synthesen und Eigenschaften neuer einschlägiger Verbindungen von Platin und Palladium mit Trithioethern.

Eingesetzte Trithioether

Die in die Untersuchungen eingesetzten Trithioether (auch die davon sehon länger bekannten Verbindungen I, II, V und VI, diese allerdings experimentell erheblich einfacher und in besseren Ausbeuten, als nach der Literatur [3,5-7]) (Tab. 1) wurden nach einem von uns ausgearbeiteten Verfahren hergestellt [2] durch Umsetzung von 1,3-Bis-brommethylsulfid [8] mit den entsprechenden Thiolaten nach

(Beispiele im Experimentalteil für die noch nicht beschriebenen Verbindungen I, VI und VII).

Tabelle 1 Eingesetzte Trithioethe	Tabelle 1	Eingesetzte	Trithioether
-----------------------------------	-----------	-------------	--------------

Rest R	Verbindung		Ausb. %	Schap., Sdp. ^O C/mmllg	Lit.
сн _з s	I (CH ₃ SCH ₂) ₂ S	farbloses Öl	82,0	41-44/0,3	[3, 4,
С ₂ Н ₅ S	II (C ₂ H ₅ SCH ₂) ₂ S	farbloses Öl	67,0	62-66/0,05	$[2, 4, \frac{7}{2}]$
n-ε ₄ Η ₉ S	111 (n-C ₄ H ₉ 5CH ₂) ₂ S	farbloses Öl	68,0	90-95/0,05	[2]
PhCH ₂ S	IV (PHCH2SCH2)25	farblose Nadeln	54,4	45-46	[2]
PhS	V (PhSCH ₂) ₂ S	schwach gelbes Öl	80,4	_	[2, 6]
0 ₂ N -© -s	VI (02N-(0-SCH2)2S	hellgelbes Pulver	85,5	132-133	[6]
H ₂ N- () -S	VII (H2N-Q-SCH2)25	orangegelbes viskoses Öl	93,0	-	-

Tabelle 2 IR-Spekten der Trithioether I, VI und VII

I	VI .	VII	
	965 s	1009 s	ringbending
	951 s	950 m	
972 s			
958 s	935 sh	933 Ь	
898 s		890 m	
850 sh	852 vs		
837 m	841 sh		CH ₂ -rocking
830 sh	834 vs		-
799 w	811 s	819 Ь	
774 vs	785 vs	784 m	CH ₂ -rocking
739 vs	736 vs	726 b	v _{C-s}
	724 vs		C-3
709 s	717 vs	715 sh	vc-s
695 vs	677 vs	690 sh	V _{C-5}
654 s	660 s		C-3
643 sh	635 s		
	622 s	620 b	
1	532 vs		
	524 vs	520 b	
	469 vs		
	408 w		·
	400 w	400 ь	
	384 m		
323 m	304 m	1	
	275 m		

In Tab. 2 finden sich die einfach zu interpretierenden IR-Spektren, in Tab. 3 die NMR-Spektren der Verbindungen I, VI und VII.

				
Verb.	δ(ppm)	Multiplizität	Ursprung	Lösungsmittel und Standard
I	3,66	Singulett	-S-CH ₂ -S-	Benzol
	2,00	Singulett	CH ₃ S-	
VΙ	8,26~7,36	Multiplett	aromat. Prot.	омѕа
	4,5	Singulett	-S-CH ₂ -S-	
VII	7,59-6,59	Multiplett	aromat. Prot.	Aceton
	4,92-3,67	stark verbreitert	2.	
			Singulett bei 4,09 ppm	
i	4,09	Singulett	-S-CH ₂ -S-	

Tabelle 3 ¹H-NMR-Spektren der Trithioether I, VI und VII

Reaktionsprodukte

Lösungen der Trithioether I—VI reagieren mit wäßrigen Lösungen von Kaliumtetrachloroplatinat(II) bzw. Kaliumtetrachloropalladat(II) unter den im Experimentalteil angegebenen Bedingungen unter Bildung von gelb bis orangegelb gefärbten Komplexen des Typs $\mathrm{MCl_2L}$ (L = bifunktionell wirkender Thioether) nach

Die dabei gebildeten Verbindungen sind luftstabil und in Dimethylformamid, Dimethylsulfoxid und flüssigem Schwefeldioxid löslich.

1,5-Di-p-aminophenyl-1,3,5-trithio-n-pentan, VII, bildet dagegen Niederschläge, die in allen untersuchten Lösungsmitteln unlöslich und offensichtlich polymer sind. Sie sind — im Gegensatz zu den übrigen Komplexen — auch nicht unzersetzt schmelzbar.

Daraus folgt, daß in der Verbindung VII

$$H_2N SCH_2SCH_2S NH_2$$

die Aminstickstoffatome im Vergleich zu den Schwefelatomen bevorzugt an die Metallzentren koordinieren. Die Bildung niedermolekularer Ringverbindungen wird damit naturgemäß lange nicht so begünstigt, wie die Ausbildung hochpoly-

merer Produkte der Art

M=Pd, Pt

Das Fehlen von Banden für Metall-Schwefel-Bindungen im entsprechenden IR-Bereich stützt diesen Befund ebenso, wie frühere Ergebnisse der Verdrängung von Thioethern aus der Koordinationssphäre von Platin(II) und Palladium(II) durch Amine [9, 10].

Die IR- und Raman-Spektren der Platinkomplexe sind in Tab. 4 angegeben (von der polymeren Verbindung X konnte kein Ramanspektrum erhalten werden; sie "verbrennt" im Laserstrahl).

Tabelle 4 IR	- und	Ramanspektren	der	Platinverbindungen
--------------	-------	---------------	-----	--------------------

	IR-Spektr	en			Raman-S	pektren
VIII	IX	х		VIII	IX	
980 vs 969 vs 969 vs 961 s 961 s 955 sh 860 s 851 s 7781 s 7755 sh 7744 vs 718 m 688 m 400 m 392 m 393 m 349 m 349 m 347 sh 305 s 300 sh 265 sh 275 v	1007 vs 973 s 962 s 862 s 849 vs 845 sh 828 vs 803 v 785 vs 775 s 775 vs 677 vs 6650 v 628 s 611 s 520 m 477 vs 434 s 3366 m 3355 m 328 b 327 sh 321 b	1012 s 820 b 730 sh 719 m 629 w 560 w 518 b 415 w 321 b 320 sh	VPt-S VPt-S VPt-Cl	750 m 698 s 694 s 402 m 356 m 352 vs 312 s 232 m 208 m 164 s 128 m	642 sh 632 s 528 m 492 w 444 m 370 m	ringbending VC-S S VPt-S VPt-S VPt-C1 VPt-C1

Die IR-Daten der Palladiumverbindungen sind in Tab. 5 aufgeführt. Die Intensität der Banden im Bereich von 320 cm⁻¹ und 290 cm⁻¹ veranlaßt uns, diese Banden den Metall-Halogen-Streckschwingungen zuzuordnen. Die Metall-Schwefel-Streckschwingungen ordnen wir den Banden im Bereich von 395 cm⁻¹ und 350 cm⁻¹ zu.

Tabelle 5 IR-Spektren der Palladium(II)-Komplexe

XI	XII	XIII	XIV	xv	XVI	XVII	
			1027 s	1021 s	1011 s	1012 s	ringbending
	J		1000 s	1000 s	1005 s	ļ.	Trigocitoring
980 vs	1	992 ₩	992 ษ	992 sh	İ	1	
974 vs	970 vs	965 b	973 s	971 s	978 w]	
961 s			ł	1	964 m		
946 s	}	935 sh	928 s	1	952 m	952 b	
	1	917 s	897 vs	919 w	į.		
		873 m	890 sh	872 vs		1	
	857 vs	855 sh		1	854 vs		ļ
849 vs	ı	850 vs	846 s	842 s			İ
	1	848 sh	835 vs	835 s	833 vs	ł	
	1	1			830 sh		
	1	700	812 w	805 vs	819 s	819 Ь	1
790 s	796 vs	795 w	799 s	760 sh	815 sh	1	ì
783 vs	H	783 m	775 vs	/60 SN	1	1	
200	750	773 m	769 vs 765 sh	755 vs	ļ	}	
750 sh	756 vs	1	/62 Sn	/35 VS	1	1	ŀ
740	745 sh 740 vs	742 s	748 s	749 vs	749 s	1	
742 vs	740 VS	730 s	738 vs	745 sh	738 vs	i	vc-s
740 sh	/22 Sn	170 8	176 VS	734 vs	120 VS	1	
	1	718 sh	718 sh	725 sh	728 vs	718 b	
	1	/10 511	710 511	127 511	720 sh	1 /10 0	vc-s
692 vs	1	709 s	700 vs	695 vs	708 vs	705 sh	
072 VS	1	/0/ 5	700 43	688 vs	685 vs	705 0	1
	669 m	662 m	673 vs	670 m	678 vs	l.	
	665 W	002 "	665 sh	0,0	665 sh		
	651 vs	655 m	648 m		650 w	1	
	625 m	1000 1	632 m	ļ	623 s	628 m	i
	614 m	610 ь	614 m	609 m	6D9 s		
	027	1020 2	568 s		546 m	552 b	
	Í	491 m	1	500 vs	1527 s	518 b	ì
			473 b	484 vs	470 s	474 b	
	1	i		442 vs	1		l
	415 s	1		415 m	404 m		1
395 vs	396 m	394 m	391 s	398 w	398 sh	1	ν _{Pd-S}
	370 m	372 sh	372 s .	368 w	375 sh		1 ' 0-5
	Į		1	1 .	365 sh	1	
355 vs	349 m	353 s	345 w	352 m	352 s		VPd-S
325 sh	1	1	1	344 sh	337 s	339 b	
318 b	316 b	318 b	323 b	320 Ь	314 m	329 sh	VPd-C1
295 sh	305 sh	1	1 .	1	1	ŀ	
280 b	273 b	297 b	297 Ь	306 b	305 m	(VPd-C1
	1	285 sh	1	300 sh	298 sh	1	1
	ļ	275 sh	1	282 sh	279 m	0.75	1
	1	1	270 w	270 w	275 sh	275 w	1
	259 w	245 w	- 1	249 s	261 s	1	
	i	240 ₩	1	239 m	1	1	1
	1	1	1	1	ı		1

Tabelle 6 Raman-Spektren der Palladium(II)-Komplexe

XI	XII	XIII	XIV	xv	XVI	
			1035 m	1028 s	1042 m	ringbending
			1005 s	1004 s	1012 s	
862 s	977 w		1	1	861 s	
	1	1	812 w	(846 w	i
200		i	776 w	740 -	350	1,,
752 m	750 m		750 w	742 m	752 m	vc-s
701 m		1	720 w	704 m	728 s	1
	679 m	1	684 m	676 m	690 w	ŀ
	659 m				630 s	
644 m	635 m	i	640 m	644 m	618 s	
	625 m	550	620 m	617 m		[
	544 ₩	550 w	568 w	400	531 s	t
	1,,,	505 w	482 w	488 w	415 -	1
	418 m		1	425 w	415 m	1
	404 w	703	700	404 w	403 m	1
	376 W	381 w	392 m	372 w	365 m	VPd-S
344 v	356 w	358 m	372 m	359 w	340 m	Pd-S
318 s	322 s	321 s	326 vs	323 vs	704 -	Pd-C1
304 vs	289 в	307 s	304 s	315 sh	304 s	VPd-C1
	253 s	0.71	256 m	256 m	271 W	i
	1	231 w	244 m	244 m	243 m	
224 s	220 s	210 m	222 m .	214 s	201 s 173 b	
	165 s	175 w	176 s	165 s 146 vs	145 s	1
155 s	1	153 s	154 s		145 S	
	116 s		1	126 s		ŀ

Die Ramanspektren der Palladiumverbindungen finden sich in Tab. 6 (für Verbindung XVII gilt das gleiche wie für die Platinverbindung X).

In Tab. 7 sind die NMR-Spektren der Komplexverbindungen aufgeführt (mit Ausnahme der unlöslichen Polymeren X und XVII).

		-	-	•
Verb.	δ(ррт)	Multiplizität	Uraprung	Lösungsmittel
VIII	2,69	Singulett mit Pt- Sat. ³ J _{Pt-H} =45 cps Multiplett	-S-CH ₃	DMSD
	4,54-3,99	Multiplett	-S-CH ₂ -S-	
IX		ich, da nur die schar	refen Banden des freien Tri	thioethers
XI	2,58 3,95	Singulett Singulett	-S-CH ₃ -S- CH 2-S-	DMSO
IIX	1,4 3,13	Quartett	-S-CH ₂ -S- -S-CH ₂ -CH ₃ . -S- CH ₂ -CH ₃	DMSO
XIII	4,0 0,92 1,94-1,2	Singulett Triplett Multiplett	-5-CH ₂ -5- -5-CH ₂ CH ₂ CH ₂ CH ₃ -5CH ₂ CH ₂ CH ₂ CH ₃	DM50
XIV	3,12 3,99 3,72 4,37	Triplett Singulett Singulett Singulett	-SCH ₂ CH ₂ CH ₂ CH ₃ -S-CH ₂ -S- -S-CH ₂ Ph -S-CH ₂ -S-	DMSO
	7,4	Singulett	-S-CH ₂ Ph	DMS0
XV	4,33 7,6-7,2	Singulett Multiplett	-S <u>Ph</u>	UCIN
XVI	zersetzt s zu finden s		fen Banden des freien Trit	thioethers

Tabelle 7 ¹H-NMR-Spektren der Komplexverbindungen (TMS als äußerer Standard)

Beschreibung der Versuche

IR-Spektren wurden als Nujolverreibung am Gerät Perkin-Elmer 283, Raman-Spektren als Feststoff am Gerät Cary 82, NMR-Spektren an den Geräten Varian XL 100 und Varian T 60 aufgenommen. Die Schmelzpunkte wurden am Gerät DuPont 990 Thermal Analyser und die C, H, N-Analysen am Gerät Perkin-Elmer 240 bestimmt.

Zur Darstellung der Trithioether wird das früher [2] beschriebene Verfahren benutzt.

2,4,6-Trithio-n-heptan, I. Durch 2,76 g (120 mmol) Natrium in 100 ml absolutem Methanol werden 5,75 g (120 mmol) Methylmerkaptan geleitet und eine Stunde refluxiert. Anschließend werden unter Rühren 13,2 g (60 mmol) 1,3-Bis-brommethylsulfid in 20 ml absolutem Methanol zugetropft. Dann wir abgezogen, mit Wasser aufgenommen, mit Ether extrahiert, über CaCl₂ getrocknet und destilliert.

Analyse: C gef.: 31,5 (ber.: 31,1); H 6,82 (6,53); S 61,6 (62,3).

1,5-Di-p-nitrophenyl-1,3,5-trithio-n-pentan, VI. Zu 1,38 g (60 mmol) Natrium in 50 ml absolutem Methanol werden 9,30 g (60 mmol) p-Nitrothiophenol in 100 ml absolutem Methanol gegeben, dabei färbt sich die Lösung dunkelrot. Es wird eine Stunde refluxiert, und anschließend werden 6,60 g (30 mmol) 1,3-Bis-brommethylsulfid in 10 ml absolutem Methanol zugegeben, dabei fällt sofort ein hellgelber Niederschlag aus, der abfiltriert, mit Methanol und n-Hexan gewaschen und über P_4O_{10} getrocknet wird.

Analyse: C gef.: 45,4 (ber.: 45,6); H 3,35 (3,28); S 25,3 (26,1).

1,5-Di-p-aminophenyl-1,3,5-trithio-n-pentan, VII. Darstellung wie VI, Aufarbeitung wie I. Ansatz: 1,38 g (60 mmol) Natrium, 7,51 g (60 mmol) p-Aminothiophenol, 6,60 g (30 mmol) 1,3-Bis-brommethylsulfid.

Analyse: C gef.: 54,0 (ber.: 54,5); H 5,41 (5,23); S 31,0 (31,2).

- 1,3-Bis-methylthio-2-thiopropan-dichloroplatinat(II), VIII. Zu einer Lösung von 0,83 g (2,00 mmol) Kaliumtetrachloroplatinat(II) in 15 ml Wasser werden 0,31 g (2,00 mmol) 2,4,6-Trithio-n-heptan, I, in 15 ml Ethanol gegeben; dabei bildet sich sofort ein fleischfarbener Niederschlag. Anschließend wird zwei Stunden unter Rückfluß gekocht, wobei ein gelber Niederschlag anfällt, der abfiltriert, mit Wasser, Ethanol und n-Hexan gewaschen und im Vakuum getrocknet wird¹).
- 1,3-Bis-p-nitrophenylthio-2-thiopropan-dichloroplatinat(II), IX. Unter Rühren werden zu 1,10 g (3,00 mmol) 1,5-Di-p-nitrophenyl-1,3,5-trithio-n-pentan, VI, in 150 ml Nitromethan 1,25 g (3,00 mmol) Kaliumtetrachloroplatinat(II) in 70 ml Wasser/Ethanol/Aceton (1:1:5) gegeben und drei Stunden unter Rückfluß gekocht; anschließend wird auf 100 ml eingeengt und der dabei anfallende gelbe Niederschlag abfiltriert, mit Wasser, Aceton und n-Hexan gewaschen und im Vakuum getrocknet¹).

Umsetzung von VII mit Kaliumtetrachloroplatinat(II) zu X. Unter Rühren werden zu 0,92 g (3,00 mmol) 1,5-Di-p-animophenyl-1,3,5-trithio-n-pentan, VII, in 50 ml Aceton 1,25 g (3,00 mmol) Kaliumtetrachloroplatinat(II) in 10 ml Wasser zugegeben und eine Stunde unter Rückfluß gekocht. Der dabei anfallende ockerfarbene Niederschlag wird abfiltriert und wie IX aufgearbeitet.

- 1,3-Bis-methylthio-2-thiopropan-dichloropalladat(II), XI. Zu 0,75 g (2,00 mmol) Kaliumtetrachloropalladat(II) in 10 ml Wasser werden 0,31 g (2,00 mmol) 1,3,5-Trithio-n-heptan in 10 ml Ethanol gegeben, dabei fällt sofort ein gelber Niederschlag aus, der abfiltriert, mit Wasser, Ethanol und n-Hexan gewaschen und im Vakuum getrocknet wird¹).
- 1,3-Bis-ethylthio-2-thiopropan-dichloropalladat(II), XII. Darstellung und Aufarbeitung wie XI. Ansatz: 0,75 g (2,00 mmol) Kaliumtetrachloropalladat(II), 0,36 g (2,00 mmol) 3,5,7-Trithio-n-nonan, II¹).
- 1,3-Bis-n-butylthio-2-thiopropan-dichloropalladat(II), XIII. Darstellung und Aufarbeitung wie XI. Ansatz: 0,75 g (2,00 mmol) Kaliumtetrachloropalladat(II), 0,47 g (2,00 mmol) 5,7,9-Trithio-n-tridecan, III¹).
- 1,3-Bis-benzylthio-2-thiopropan-dichloropalladat(II), XIV. Darstellung und Aufarbeitung wie XI. Ansatz: 0,75 g (2,00 mmol) Kaliumtetrachloropalladat(II), 0,61 g (2,00 mmol) 1,7-Diphenyl-2,4,6-trithio-n-heptan, IV, in 20 ml Ethanol/Ether (1:1)1.
- 1,3-Bis-phenylthio-2-thiopropan-dichloropalladat(II), XV. Darstellung und Aufarbeitung wie XI, Ansatz: 0,75 g (2,00 mmol) Kaliumtetrachloropalladat(II), 0,55 g (2,00 mmol) 1,5-Diphenyl-1,3,5-trithio-n-pentan, V, in 20 ml Ethanol/Ether (1:1)1.
- 1,3-Bis-p-nitrophenylthio-2-thiopropan-dichloropalladat(II), XVI. Zu 0,75 g (2,00 mmol) Kaliumtetrachloropalladat(II) in 10 ml Wasser werden 0,74 g (2,00 mmol) 1,3-Di-p-nitrophenyl-1,3,5-trithio-n-pentan, VI, in 50 ml Nitromethan gegeben und mit Ethanol homogenisiert, dabei bildet sich ein orangefarbener Niederschlag, der wie XI aufgearbeitet wird¹).

Umsetzung von VII mit Kaliumtetrachloropalladat(II) zu XVII. Darstellung und Aufarbeitung wie XI. Ansatz: 0,75 g (2,00 mmol) Kaliumtetrachloropalladat(II), 0,62 g (2,00 mmol) 1,5-Di-p-aminophenyl-1,3,5-trithio-n-pentan, VII, in 20 ml Aceton¹).

¹⁾ Ausbeute, physikalische Eigenschaften und Analysenwerte siehe Tab. 8.

Verb.	Ausb.	Schmp.	ZersP.	Kristallform	Analysen [ge	f. (ber.)] [%] H	S	N
VIII	89,3	208	236	gelbes Pulver	10,1 (11,4)	2,25 (2,39)	23,9 (22,9)	
IX	65,0	179-182	-	gelbe Nadeln	26,4 (26,5)	2,11 (1,91)	15,6 (15,2)	4,34 (4,42)
Х	90,1	-	>230	ockergelbes Pulver	31,0 (29,3)	2,96 (2,81)	16,8 (16,7)	4,52 (4,88)
XI	97,2	184	196	orangegelbe Nadeln	14,4 (14,5)	3,34 (3,04)	31,0 (29,0)	
XII	95,9	154	190	orangegelbes Pulver	20,0 (20,0)	4,15 (3,92)	27,6 (26,7)	
XIII	89,6	138	203	orangegelbes Pulver	28,2 (28,9)	5,35 (5,33)	24,6 (23,1)	
XIV	97,2	182	-	gelbes Pulver	39,6 (39,7)	4,27 (3,75)	20,0 (19,9)	
XV	96,9	136	-	gelbes Pulver	36,8 (36,9)	3,38 (3,10)	22,3 (21,2)	
XVI	62,8	155	-	oranges Pulver	35,0 (30,8)	3,72 (2,22)	20,5 (17,6)	5,25 (5,13)
XVII	95,7	-	>112	rotbraunes Pulver	34,9 (34,6)	3,60 (3,32)	19,4 (19,8)	5,32 (5,77)

Tabelle 8 Ausbeuten, physikalische Eigenschaften und Analysenwerte der Komplexverbindungen

Frau E. Ullrich und Frl. R. Schedl danken wir für die analytischen Bestimmungen, den Herren Dr. W. Buchner und P. Kneis für die Aufnahme und Interpretation der NMR-Spektren, der Deutschen Forschungsgemeinschaft und dem Fonds der Chemie für die Unterstützung der Untersuchungen.

Literatur

- [1] M. SCHMIDT u. G. G. HOFFMANN, Phosphorus and Sulfur 4, 239 (1978).
- [2] M. SCHMIDT u. G. G. HOFFMANN, Phosphorus and Sulfur 4, 249 (1978).
- [3] F. Feher u. K. Vogelbruch, Chem. Ber. 91, 996 (1958).
- [4] D. WELTI u. D. WHITTAKER, J. Chem. Soc. 1962, 4372.
- [5] L. Horner u. J. Dörges, Tetrahedron Lett. 12, 757 (1963).
- [6] F. Runge, Z. El-Hewehi u. D. Hempel, J. prakt. Chem. (4) 8, 1 (1959).
- [7] H. BÖHME, H. FISCHER u. R. FRANK, Liebigs Ann. Chem. 563, 54 (1949).
- [8] E. Weissflog u. M. Schmidt, Z. anorg. allg. Chem. 437, 146 (1977).
- [9] M. Martelli, G. Marangoni u. L. Cattalini, Gazz. Chim. Ital. 98, 1031 (1968).
- [10] G. MARANGONI, S. DEGETTO U. E. CELON, Gazz. Chim. Ital. 99, 816 (1969).

Bei der Redaktion eingegangen am 21. April 1978.

Anschr. d. Verf.: Prof. Dr. M. Schmidt und Dipl.-Chem. G. G. Hoffmann, Inst. f. Anorg. Chemie d. Univ., Am Hubland, D-8700 Würzburg