Über einige neue Platin(II)- und Palladium(II)-Komplexe mit mehrfunktionellen Thioethern

Von M. Schmidt und G. G. Hoffmann

Würzburg, Institut für Anorganische Chemie der Universität

Inhaltsübersicht. Nach einem einfachen Syntheseprinzip für teilweise schon früher bekannte Trithioether werden deren Umsetzungen mit K_2PtCl_4 und K_2PdCl_4 beschrieben. Sie führen in acht Fällen zu löslichen, ringförmigen Komplexverbindungen mit zwei Metall-Schwefel-Bindungen. Zwei weitere Verbindungen, die über Metall-Stickstoff-Bindungen koordiniert sind, sind unlösliche Polymere.

On Some New Coordination Compounds of Platinum(II) and Palladium(II) with Multidendate Thioethers

Abstract. A simple synthesis is given for the formation of seven trithioethers (partly already known). Their reactions with K_2PtCl_4 and K_2PdCl_4 lead to new co-ordination compounds. In eight cases soluble, ringshaped molecules with two metal-sulphur bonds were obtained, whereas in two other cases metal-nitrogen co-ordination leads to in soluble polymeric products.

Allgemeines

Im riesigen Gebiet der Koordinationschemie fällt eine relativ stiefmütterliche Behandlung des Verhaltens polyfunktioneller Thioether gegenüber Verbindungen der d⁸-Metalle Nickel, Palladium und Platin auf (Literaturübersicht siehe [1]). Kürzlich haben wir über einige neue Platin(II)-Verbindungen dieser Art berichtet [2]). In den Produkten (monomere Komplexe) wirken die Thioether als zweizähnige Chelatliganden:

Es bedarf wohl noch vieler weiterer Experimentaluntersuchungen und theoretischer Studien, bevor allgemein gültige Gesetzmäßigkeiten erarbeitet sind, die es ermöglichen, dieses interessante "Grenzgebiet" zwischen der Chemie von Schwefelverbindungen einerseits und der d⁸-Metalle andererseits widerspruchsfrei und erschöpfend zu beschreiben.

Im folgenden berichten wir über Synthesen und Eigenschaften neuer einschlägiger Verbindungen von Platin und Palladium mit Trithioethern.

Eingesetzte Trithioether

Die in die Untersuchungen eingesetzten Trithioether (auch die davon schon länger bekannten Verbindungen I, II, V und VI, diese allerdings experimentell erheblich einfacher und in besseren Ausbeuten, als nach der Literatur [3, 5-7]) (Tab. 1) wurden nach einem von uns ausgearbeiteten Verfahren hergestellt [2] durch Umsetzung von 1,3-Bis-brommethylsulfid [8] mit den entsprechenden Thiolaten nach

$$\label{eq:RSNa} \begin{split} & \text{RSNa} + \text{BrCH}_2\text{SCH}_2\text{Br} + \text{NaSR} \rightarrow \text{RSCH}_2\text{SCH}_2\text{SR} + 2 \text{ NaBr.} \end{split} \tag{1}$$
 (Beispiele im Experimentalteil für die noch nicht beschriebenen Verbindungen I, VI und VII).

Rest R	Verbindung		Ausb. %	Schmp., Sdp. ^O C/mmllg	Lit.
сн _з s	I (CH3SCH2)25	farbloses Öl	82,0	41-44/0,3	[3, 4, 5
С ₂ Н ₅ S	II (C ₂ H ₅ SCH ₂) ₂ S	farbloses Öl	67,0	62-66/0,05	[2, 4, 7
n-C4H9S	III (n-C4H95CH2)25	farbloses Öl	68,0	90-95/0,05	[2]
PhCH ₂ S	IV (PHCH2SCH2)25	farblose Nadeln	54,4	45-46	[2]
PhS	V (PhSCH ₂) ₂ S	schwach gelbes öl	80,4	-	[2, 6]
0 ₂ N-@-S	VI (02N-0-SCH2)2S	hellgelbes Pulver	85,5	132-133	[6]
H ₂ N- ⊘ -S	VII (H ₂ N-@-SCH ₂) ₂ S	orangegelbes viskoses Öl	93,0		-

Tabelle 1 Eingesetzte Trithioether

Tabelle 2 IR-Spekten der Trithioether I, VI und VII

I	VI	VII	
	965 s 951 s	1009 s 950 m	ringbending
972 s	1		
958 s	935 sh	933 Ь	
898 s		890 m	
850 sh	852 vs	I	
837 m	841 sh		CH2-rocking
830 sh	834 vs		2 .
799 w	811 s	819 Ъ	
774 vs	785 vs	784 m	CHrocking
739 vs	736 vs	726 Ь	
	724 vs		0-3
709 s	717 vs	715 sh	Vr_s
695 vs	677 vs	690 sh	V _{C-5}
654 s	660 s		0-5
643 sh	635 s		
	622 s	620 b	
	532 vs		
	524 vs	520 b	
	469 vs		
	408 w		
	400 w	400 Б	
	384 m		
323 m	304 m		
	275 m		

In Tab. 2 finden sich die einfach zu interpretierenden IR-Spektren, in Tab. 3 die NMR-Spektren der Verbindungen I, VI und VII.

·				
Verb.	δ(ppm)	Multiplizität	Ursprung	Lösungsmitte und Standard
I	3,66	Singulett	SCH2-S-	Benzol
	2,00	Singulett	<u>CH3</u> S-	
VI	8,26~7,36	Multiplett	aromat. Prot.	DMSQ
	4,5	Singulett	-S-CH ₂ -S-	
VII	7,59-6,59	Multiplett	aromat. Prot.	Aceton
	4,92-3,67	stark verbreitert	-NH ₂ , überlagert von Singulett bei 4,09 ppm	
est.	4,09	Singulett	-S-CH2-S-	

Tabelle 3 ¹H-NMR-Spektren der Trithioether I, VI und VII

Reaktionsprodukte

Lösungen der Trithioether I-VI reagieren mit wäßrigen Lösungen von Kaliumtetrachloroplatinat(II) bzw. Kaliumtetrachloropalladat(II) unter den im Experimentalteil angegebenen Bedingungen unter Bildung von gelb bis orangegelb gefärbten Komplexen des Typs MCl_2L (L = bifunktionell wirkender Thioether) nach

$$RSCH_2SCH_2SR + K_2MCI_4 \longrightarrow S_{r} K_{cl} + 2Kcl$$

$$RSCH_2SCH_2SR + 2Kcl$$

$$RSCH_2SCH_2SR + 2Kcl$$

Die dabei gebildeten Verbindungen sind luftstabil und in Dimethylformamid, Dimethylsulfoxid und flüssigem Schwefeldioxid löslich.

1,5-Di-p-aminophenyl-1,3,5-trithio-n-pentan, VII, bildet dagegen Niederschläge, die in allen untersuchten Lösungsmitteln unlöslich und offensichtlich polymer sind. Sie sind — im Gegensatz zu den übrigen Komplexen — auch nicht unzersetzt schmelzbar.

Daraus folgt, daß in der Verbindung VII

die Aminstickstoffatome im Vergleich zu den Schwefelatomen bevorzugt an die Metallzentren koordinieren. Die Bildung niedermolekularer Ringverbindungen wird damit naturgemäß lange nicht so begünstigt, wie die Ausbildung hochpolymerer Produkte der Art

M= Pd, Pt

Das Fehlen von Banden für Metall-Schwefel-Bindungen im entsprechenden IR-Bereich stützt diesen Befund ebenso, wie frühere Ergebnisse der Verdrängung von Thioethern aus der Koordinationssphäre von Platin(II) und Palladium(II) durch Amine [9, 10].

Die IR- und Raman-Spektren der Platinkomplexe sind in Tab. 4 angegeben (von der polymeren Verbindung X konnte kein Ramanspektrum erhalten werden; sie "verbrennt" im Laserstrahl).

	IR-Spektr	еп			Raman-Sp	pektren
VIII	IX	x		VIII	IX	
VIII 980 vs 969 vs 955 sh 860 s 851 s 798 s 781 s 755 sh 744 vs 718 m 688 m 400 m 392 m 392 m	IX 1007 vs 973 s 962 s 862 s 849 vs 803 v 755 s 759 vs 759 vs 729 vs 677 vs 662 vs 803 v 615 s 539 s 520 m 477 vs 434 s 366 m	X 1012 s 820 b 730 sh 719 m 629 w 560 w 518 b 415 w	ringbending [∨] C-5 [∨] C-5 [∨] Pt-S [∨] Pt-5	VIII 750 m 698 s 694 s 402 m 356 m 332 vs 312 s 232 m 208 m 164 s 128 m	IX 1117 vs 1087 vs 861 s 736 m 692 v 642 sh, 632 s 528 m 492 v 444 m 370 m 331 vs 324 sh 296 v 226 m 222 m 157 vs 122 vs	ringbending V _{C-S} s VPt-S VPt-S VPt-C1 VPt-C1
327 s 315 sh 305 s 300 sh 285 sh 275 w	328 b 325 sh 311 b 278 m 275 sh 265 w 255 m 249	321 b 320 sh 300 sh	^v Pt-Cl ^v Pt-Cl			

Tabelle 4 IR- und Ramanspektren der Platinverbindungen

Die IR-Daten der Palladiumverbindungen sind in Tab. 5 aufgeführt. Die Intensität der Banden im Bereich von 320 cm^{-1} und 290 cm^{-1} veranlaßt uns, diese Banden den Metall-Halogen-Streckschwingungen zuzuordnen. Die Metall-Schwefel-Streckschwingungen ordnen wir den Banden im Bereich von 395 cm^{-1} und 350 cm^{-1} zu.

XI	XII	XIII	VIX	xv	XVI	XVII	
			1027 s	1021 s	1011 s	1012 s	ringhending
			1000 s	1000 s	1005 s	!	Trigoendring
980 vs		992 w	992 w	992 sh	1		
974 vs	970 vs	965 b	973 s	971 s	978 w]
961 s					964 m		
946 s		935 sh	928 s	1	952 m	952 b	
		917 s	897 vs	919 w	1		
		873 m	890 sh	872 vs			
	857 vs	855 sh		1	854 vs		
849 vs		850 vs	846 s	842 s			1
		848 sh	835 vs	835 s	833 vs	ł	
					830 sh		
	1	1	812 W	805 vs	819 s	919 0	1
790 s	796 vs	795 w	799 s		812 SU		
783 vs		783 m	775 vs	760 Sh			
		// <i>3</i> m	769 VS	700			
750 sh	756 VS		765 SN	/>> VS	1		1
-	745 sh	740 -	740 -	740	748 -	1	
742 vs	740 vs	742 8	748 8	1 749 VS	749 \$		Vc-s
740 sh	/35 SN	/30 S	/ 28 VS	745 80	84 961		
	1	1 710 -	710 -1	734 VS	720	710 6	
		/18 sn	/18 SN	/25 Sh	720 vs	110 0	°C-S
(00	1	700 -	700	105	709 10	705 ab	
692 VS	1	709 5	700 VS	699 10	695 VB	705 30	
	100 -	100 m	(77	600 Va	679 10		
	669 m	664 11	675 vs	0,0	665 eb		
	665 W	455 m	6/19 m		650 w		
	625 m	1 220	632 m		623 9	628 m	
	62.5 m	610 6	614 m	609 m	609 9	020	
i i i i i i i i i i i i i i i i i i i	014 11	1010 0	568 8	002 10	546 m	552 b	
	1	/91 m	10000	500 vs	527 5	518 b	
		471 1	473 h	484 vs	470 s	474 b	
			1	442 VS			
	415 8		1	415 m	404 m		1
395 VS	396 m	394 m	391 s	398 w	398 sh		VnJC
	370 m	372 sh	372 s .	368 w	375 sh	1	ru-s
		• • • • •			365 sh		
355 vs	349 m	353 s	345 w	352 m	352 s		VPAC
325 sh				344 sh	337 s	339 b	10-3
318 b	316 Б	318 b	323 b	320 b	314 m	329 sh	VPd.C1
295 sh	305 sh						10-01
280 b	273 b	297 b	297 b	306 b	3D5 m		VPd-C1
		285 sh	1	300 sh	298 sh		
	1	275 sh	1	282 sh	279 m		1
		1	270 w	270 w	275 sh	275 ⊎	
	259 w	245 w		249 s	261 s		
	1	240 w		239 m			
				1			

Tabelle 5 IR-Spektren der Palladium(II)-Komplexe

Tabelle 6 Raman-Spektren der Palladium(II)-Komplexe

XI	XII	XIII	XIV	xv	XVI	
			1035 m 1005 s	1028 s 1004 s	1042 m 1012 s	ringbending
862 s	9 <u>77</u> w		812 w		861 s 846 w	
		1	776 w	1	1	
752 m	750 m		750 w	742 m	752 m	C-S
701 m.		1	720 w	704 m	/28 s	
	679 m		684 m	676 m	69U ₩	
	659 m			1		
644 m	635 m	t	640 m	644 m	630 S	
	625 m	1	620 m	617 m	618 s	
	544 ⊎	550 w	568 w		551 S	1
		505 w	482 w	488 w	1	
	418 m		1	425 ₩	415 m	1
	404 w			404 w	40.5 m	Ι.
	376 w	381 W	392 m	3/2 w	365 m	Pd-S
344 w	356 w	358 m	372 m	359 W	340 m	Pd-S
318 s	322 s	321 s	326 vs	323 VS		Pd-C1
304 vs	289 в	307 s	304 s	315 sh	304 s	Pd-C1
	253 s	1	256 m	256 m	271 W	
		231 W	244 m	244 m	243 m	
224 s	220 s	210 m	222 m .	214 s	201 s	1
	165 s	175 v	176 s	165 s	173 6	
155 s	1	153 s	154 s	146 vs	145 s	
	116 s			126 s		

Die Ramanspektren der Palladiumverbindungen finden sich in Tab. 6 (für Verbindung XVII gilt das gleiche wie für die Platinverbindung X).

In Tab. 7 sind die NMR-Spektren der Komplexverbindungen aufgeführt (mit Ausnahme der unlöslichen Polymeren X und XVII).

Verb.	δ(ppm)	Multiplizität	Ursprung	Lösungsmittel
VIII	2,69	Singulett mit Pt- Sat. ³ J _{Pt-H} =45 cps	-S-CH3	DMSD
	4,54-3,99	Multiplett	-S-CH2-S-	
IX	zersetzt s zu finden s	' ich, da nur die schar sind	fen Banden des freien Trit	chioethers
XI	2,58	Singulett	-S-CH3	DMSO
	3,95	Singulett	-S-CH2-S-	
XII	1,4	Triplett	-5-CH2-CH3.	DMSO
	3,13	Quartett	-S- CH2-CH3	
	4,0	Singulett	-S-CH2-5-	
XIII	0,92	Triplett	-5-CH2CH2CH2CH3	DM50
	1,94-1,2	Multiplett	-SCH2CH2CH2CH3	
	3,12	Iriplett	-SCH2CH2CH2CH3	
	3,99	Singulett	-S- CH2-S-	
XIV	3,72	Singulett	-S-CH2Ph	DMS0
	4,37	Singulett	-S-CH2-S-	
	7,4	Singulett	-5-CH2Ph	
XV	4,33	Singulett	-S-CH2-S-	DMS0
	7,6-7,2	Multiplett	-SPh	
XVI	zersetzt s zu finden s	ich, da nur die schar sind	, fen Banden des freien Trit	hioethers

Tabelle 7 ¹H-NMR-Spektren der Komplexverbindungen (TMS als äußerer Standard)

Beschreibung der Versuche

IR-Spektren wurden als Nujolverreibung am Gerät Perkin-Elmer 283, Raman-Spektren als Feststoff am Gerät Cary 82, NMR-Spektren an den Geräten Varian XL 100 und Varian T 60 aufgenommen. Die Schmelzpunkte wurden am Gerät DuPont 990 Thermal Analyser und die C, H, N-Analysen am Gerät Perkin-Elmer 240 bestimmt.

Zur Darstellung der Trithioether wird das früher [2] beschriebene Verfahren benutzt.

2, 4, 6-Trithio-n-heptan, I. Durch 2,76 g (120 mmol) Natrium in 100 ml absolutem Methanol werden 5,75 g (120 mmol) Methylmerkaptan geleitet und eine Stunde refluxiert. Anschließend werden unter Rühren 13,2 g (60 mmol) 1,3-Bis-brommethylsulfid in 20 ml absolutem Methanol zugetropft. Dann wir abgezogen, mit Wasser aufgenommen, mit Ether extrahiert, über CaCl₂ getrocknet und destilliert.

Analyse: C gef.: 31,5 (ber.: 31,1); H 6,82 (6,53); S 61,6 (62,3).

1,5-Di-p-nitrophenyl-1,3,5-trithio-n-pentan, VI. Zu 1,38 g (60 mmol) Natrium in 50 ml absolutem Methanol werden 9,30 g (60 mmol) p-Nitrothiophenol in 100 ml absolutem Methanol gegeben, dabei färbt sich die Lösung dunkelrot. Es wird eine Stunde refluxiert, und anschließend werden 6,60 g (30 mmol) 1,3-Bis-brommethylsulfid in 10 ml absolutem Methanol zugegeben, dabei fällt sofort ein hellgelber Niederschlag aus, der abfiltriert, mit Methanol und n-Hexan gewaschen und über P_4O_{10} getrocknet wird.

Analyse: C gef.: 45,4 (ber.: 45,6); H 3,35 (3,28); S 25,3 (26,1).

1,5-Di-p-aminophenyl-1,3,5-trithio-n-pentan, VII. Darstellung wie VI, Aufarbeitung wie I. Ansatz: 1,38 g (60 mmol) Natrium, 7,51 g (60 mmol) p-Aminothiophenol, 6,60 g (30 mmol) 1,3-Bis-brommethylsulfid.

Analyse: C gef.: 54,0 (ber.: 54,5); H 5,41 (5,23); S 31,0 (31,2).

1,3-Bis-methylthio-2-thiopropan-dichloroplatinat(II), VIII. Zu einer Lösung von 0,83 g (2,00 mmol) Kaliumtetrachloroplatinat(II) in 15 ml Wasser werden 0,31 g (2,00 mmol) 2,4,6-Trithio-n-heptan, I, in 15 ml Ethanol gegeben; dabei bildet sich sofort ein fleischfarbener Niederschlag. Anschließend wird zwei Stunden unter Rückfluß gekocht, wobei ein gelber Niederschlag anfällt, der abfiltriert, mit Wasser, Ethanol und n-Hexan gewaschen und im Vakuum getrocknet wird¹).

1,3-Bis-p-nitrophenylthio-2-thiopropan-dichloroplatinat(II), IX. Unter Rühren werden zu 1,10 g (3,00 mmol) 1,5-Di-p-nitrophenyl-1,3,5-trithio-n-pentan, VI, in 150 ml Nitromethan 1,25 g (3,00 mmol) Kaliumtetrachloroplatinat(II) in 70 ml Wasser/Ethanol/Aceton (1:1:5) gegeben und drei Stunden unter Rückfluß gekocht; anschließend wird auf 100 ml eingeengt und der dabei anfallende gelbe Niederschlag abfiltriert, mit Wasser, Aceton und n-Hexan gewaschen und im Vakuum getrocknet¹).

Umsetzung von VII mit Kaliumtetrachloroplatinat(II) zu X. Unter Rühren werden zu 0,92 g (3,00 mmol) 1,5-Di-p-animophenyl-1,3,5-trithio-n-pentan, VII, in 50 ml Aceton 1,25 g (3,00 mmol) Kaliumtetrachloroplatinat(II) in 10 ml Wasser zugegeben und eine Stunde unter Rückfluß gekocht. Der dabei anfallende ockerfarbene Niederschlag wird abfiltriert und wie IX aufgearbeitet.

1,3-Bis-methylthio-2-thiopropan-dichloropalladat(II), XI. Zu 0,75 g (2,00 mmol) Kaliumtetrachloropalladat(II) in 10 ml Wasser werden 0,31 g (2,00 mmol) 1,3,5-Trithio-n-heptan in 10 ml Ethanol gegeben, dabei fällt sofort ein gelber Niederschlag aus, der abfiltriert, mit Wasser, Ethanol und n-Hexan gewaschen und im Vakuum getrocknet wird¹).

1,3-Bis-ethylthio-2-thiopropan-dichloropalladat(II), XII. Darstellung und Aufarbeitung wie XI. Ansatz: 0,75 g (2,00 mmol) Kaliumtetrachloropalladat(II), 0,36 g (2,00 mmol) 3,5,7-Trithio-n-nonan, II¹).

1,3-Bis-n-butylthio-2-thiopropan-dichloropalladat(II), XIII. Darstellung und Aufarbeitung wie XI. Ansatz: 0,75 g (2,00 mmol) Kaliumtetrachloropalladat(II), 0,47 g (2,00 mmol) 5,7,9-Trithio-n-tridecan, III¹).

1,3-Bis-benzylthio-2-thiopropan-dichloropalladat(II), XIV. Darstellung und Aufarbeitung wie XI. Ansatz: 0,75 g (2,00 mmol) Kaliumtetrachloropalladat(II), 0,61 g (2,00 mmol) 1,7-Diphenyl-2,4,6-trithio-n-heptan, IV, in 20 ml Ethanol/Ether (1:1)¹).

1,3-Bis-phenylthio-2-thiopropan-dichloropalladat(II), **XV**. Darstellung und Aufarbeitung wie **XI**, Ansatz: 0,75 g (2,00 mmol) Kaliumtetrachloropalladat(II), 0,55 g (2,00 mmol) 1,5-Diphenyl-1,3,5-trithio-n-pentan, **V**, in 20 ml Ethanol/Ether $(1:1)^1$).

1,3-Bis-p-nitrophenylthio-2-thiopropan-dichloropalladat(II), XVI. Zu 0,75 g (2,00 mmol) Kaliumtetrachloropalladat(II) in 10 ml Wasser werden 0,74 g (2,00 mmol) 1,3-Di-pnitrophenyl-1,3,5-trithio-n-pentan, VI, in 50 ml Nitromethan gegeben und mit Ethanol homogenisiert, dabei bildet sich ein orangefarbener Niederschlag, der wie XI aufgearbeitet wird¹).

Umsetzung von VII mit Kaliumtetrachloropalladat(II) zu XVII. Darstellung und Aufarbeitung wie XI. Ansatz: 0,75 g (2,00 mmol) Kaliumtetrachloropalladat(II), 0,62 g (2,00 mmol) 1,5-Di-p-aminophenyl-1,3,5-trithio-n-pentan, VII, in 20 ml Aceton¹).

¹) Ausbeute, physikalische Eigenschaften und Analysenwerte siehe Tab. 8.

Verb.	Ausb.	Sehmp. [°C]	ZersP.	Kristallform	Analysen [g C	ef. (ber.)][%] H	s	N
VIII	89,3	208	236	gelbes Pulver	10,1 (11,4)	2,25 (2,39)	23,9 (22,9)	
IX	65,0	179-182	-	gelbe Nadeln	26,4 (26,5)	2,11 (1,91)	15,6 (15,2)	4,34 (4,42)
x	90,1	-	>230	ockergelbes Pulver	31,0 (29,3)	2,96 (2,81)	16,8 (16,7)	4,52 (4,88)
XI	97,2	184	196	orangegelbe Nadeln	14,4 (14,5)	3,34 (3,04)	31,0 (29,0)	
XII	95,9	154	190	orangegelbes Pulver	20,0 (20,0)	4,15 (3,92)	27,6 (26,7)	
XIII	89,6	138	203	orangegelbes Pulver	28,2 (28,9)	5,35 (5,33)	24,6 (23,1)	
XIV	97,2	182	-	gelbes Pulver	39,6 (39,7)	4,27 (3,75)	20,0 (19,9)	
xv	96,9	136	-	gelbes Pulver	36,8 (36,9)	3,38 (3,10)	22,3 (21,2)	
XVI	62,8	155	-	oranges Pulver	35,0 (30,8)	3,72 (2,22)	20,5 (17,6)	5,25 (5,13)
XVII	95,7	-	>112	rotbraunes Pulver	34,9 (34,6)	3,60 (3,32)	19,4 (19,8)	5,32 (5,77)

Tabelle 8 Ausbeuten, physikalische Eigenschaften und Analysenwerte der Komplexverbindungen

Frau E. ULLRICH und Frl. R. SCHEDL danken wir für die analytischen Bestimmungen, den Herren Dr. W. BUCHNER und P. KNEIS für die Aufnahme und Interpretation der NMR-Spektren, der Deutschen Forschungsgemeinschaft und dem Fonds der Chemie für die Unterstützung der Untersuchungen.

Literatur

- [1] M. SCHMIDT u. G. G. HOFFMANN, Phosphorus and Sulfur 4, 239 (1978).
- [2] M. SCHMIDT u. G. G. HOFFMANN, Phosphorus and Sulfur 4, 249 (1978).
- [3] F. FEHER u. K. VOGELBRUCH, Chem. Ber. 91, 996 (1958).
- [4] D. WELTI U. D. WHITTAKER, J. Chem. Soc. 1962, 4372.
- [5] L. HORNER u. J. DÖRGES, Tetrahedron Lett. 12, 757 (1963).
- [6] F. RUNGE, Z. EL-HEWEHI U. D. HEMPEL, J. prakt. Chem. (4) 8, 1 (1959).
- [7] H. BÖHME, H. FISCHER u. R. FRANK, Liebigs Ann. Chem. 563, 54 (1949).
- [8] E. WEISSFLOG u. M. SCHMIDT, Z. anorg. allg. Chem. 437, 146 (1977).
- [9] M. MARTELLI, G. MARANGONI U. L. CATTALINI, Gazz. Chim. Ital. 98, 1031 (1968).
- [10] G. MARANGONI, S. DEGETTO U. E. CELON, GAZZ. Chim. Ital. 99, 816 (1969).

Bei der Redaktion eingegangen am 21. April 1978.

Anschr. d. Verf.: Prof. Dr. M. SCHMIDT und Dipl.-Chem. G. G. HOFFMANN, Inst. f. Anorg. Chemie d. Univ., Am Hubland, D-8700 Würzburg