334 Communications Synthesis

A New Route to 1,4-Dihydro-1,2,4,5-tetrazines via Stabilized Sulfuranes

Ram S. TEWARI*, Alok K. AWASTHI**, Padma PARIHAR**

Department of Chemistry, H. B. Technological Institute, Kanpur-208 002 (U.P.), India

N-Phenacylpyridinium^{1,2} and triphenylarsonium bromides³ are known to react with arenediazonium salts in the presence of sodium acetate in methanol at 0 °C to give 1,4-dihydro-1,2,4,5-tetrazines. The reaction proceeds via 1,3-dipolar dimerization of an intermediate nitrilimine which is, in turn, formed by attack of the carbanion of the *in situ* generated ylid on the diazonium cation. The reaction is facilitated by the fact that the onium ion is a good leaving group. In view of the ability of dialkylsulfonio groups to act as excellent leaving groups, we investigated a similar synthesis of 1,4-dihydro-1,2,4,5-tetrazines (6) using phenacylidenedimethylsulfurane (1) in place of pyridinium or arsonium bromides. Sulfuranes of the type 1 have hitherto been used in a variety of syntheses, e.g., of epoxides⁴, aziridines⁵, cyclopropanes⁶, and pyridines⁷.

Our synthesis of the dihydrotetrazines 6 consists of the reaction of phenacylidenedimethylsulfurane (1) with an equimolar amount of an arenediazonium salt 2 in methanol at 0 °C. The reaction presumably proceeds via the intermediacy of the species 3 which is transformed into the nitrilimine 5 which in turn dimerizes to give the dihydrotetrazin 6; the yields of 6 are 52-78%.

Our method using sulfurane 1 is carried out under mild conditions and gives better yields of 1,4-dihydro-1,2,4,5-tetrazines

than are obtained by the pyridinium or arsonium salt methods ^{1,2,3}.

The structure of compounds 6 was established by microanalyses, physical, and spectral data.

$\label{lem:condition} \begin{tabular}{ll} $1,4$-Diaryl-3,6-dibenzoyl-1,4-dihydro-1,2,4,5-tetrazines & (6); & General Procedure: \end{tabular}$

A solution of phenacylidenedimethylsulfurane⁷ (1; 1.8 g, 10 mmol) in methanol (50 ml) is added dropwise to a freshly prepared solution of the diazonium salt (2; 10 mmol) at 0 °C during 30 min with stirring. The mixture is kept in an ice bath for a further 2 h. The solid which separates is recrystallized from ethanol.

Received: November 2, 1982

- * Address for correspondence.
- ** Present Address: Chemistry Division, I.D.P.L. Research Centre, P.O. Balanagar Township, Hyderabad-500037 (A.P.), India.
- ¹ F. Krollpfeiffer, E. Braun, Ber. Dtsch. Chem. Ges. 70, 89 (1937).
- ² R. Huisgen, E. Aufderhaar, G. Wallbillich, *Chem. Ber.* **98**, 1476 (1965).
- R. K. Bansal, S. K. Sharma, J. Organomet. Chem. 155, 293 (1978).
- ⁴ R. S. Tewari, A. K. Awasthi, S. C. Chaturvedi, Z. Naturforsch. [b] 35, 1565 (1980).
- ⁵ R. S. Tewari, A. K. Awasthi, A. K. Dubey, *Indian J. Chem.* [B] 19, 216 (1980).
- ⁶ R. S. Tewari, A. K. Awasthi, *Indian J. Chem.* [B] 19, 155 (1980).
- ⁷ R. S. Tewari, A. K. Awasthi, Synthesis 1981, 314.

Table. 1,4-Diaryl-3,6-dibenzoyl-1,4-dihydro-1,2,4,5-tetrazines (6) prepared

6	R	Yield [%]	m.p. ^a [°C]		M.S. ^b	I.R. ^c (Nujol)	¹ H-N.M.R. ^d (CDCl ₃ /TMS _{int})
			found	reported ³	m/e (M ⁺) (calculated)	$v [cm^{-1}]$ (C=O _{stretching})	δ [ppm]
a	Н	71	195-196°	196°	443 (444.5)	1670	6.8-8.4 (m, 20 H _{arom})
b	4-CH ₃	52	147-148°	148°		1670	$2.1 \text{ (s, 6 H, } -\text{CH}_3\text{); } 6.08-8.2 \text{ (m, } 18 \text{ H}_{arom}\text{)}$
c	4-Cl	78	200-201°	202°		1650	6.0-8.1 (m, 18 H _{arom})
d	4-NO ₂	70	217-218°	217°	534 (534.5)	1640	6.4-8.6 (m, 18 H _{arom})
e	4-Br	72	186-187°	188°	ì í	1660	$6.2-8.2 \text{ (m, } 18 \text{ H}_{arom})$
f	4-OCH ₃	68	163-164°	163°	504 (504.5)	1640	2.92 (s, 6 H, OCH ₃); 6.0-8.2 (m, 18 H _{arom})

Melting points were determined using a Gallenkamp apparatus and are uncorrected. The microanalyses were in good accord with the calculated values: C, ±0.07; H, ±0.07; N, ±0.08.

^b Recorded on Varian Mat Spectrometer.

^c Recorded on a Perkin Elmer Infracord instrument.

d Recorded on Varian A-60 Spectrometer.