Structural Differences in η^5 -C₅H₅ and η^5 -P₃C₂Bu^t₂ Tetrametallic Complexes. Synthesis of [PtM₂Cl(P₃C₂Bu^t₂)(CO)₈(PEt₃)₂] and [Pt₂M₂(P₃C₂Bu^t₂)₂(CO)₆(PEt₃)₂], (M = Cr, Mo, W). Crystal and Molecular Structure of [Pt₂W₂(P₃C₂Bu^t₂)₂(CO)₆(PEt₃)₂]

Peter B. Hitchcock, Mohamed F. Meidine, John F. Nixon,* and Gary J. D. Sillett

School of Chemistry and Molecular Sciences, University of Sussex, Brighton BN1 9QJ, Sussex, U.K.

The two tetrametallic complexes $[Pt_2Cr_2(\eta^5-C_5H_5)_2(CO)_6(PEt_3)_2]$ and $[Pt_2W_2(\eta^5-P_3C_2But_2)_2(CO)_6(PEt_3)_2]$ have completely different molecular structures.

The isolobal concept¹ provides an important description of complex organometallic compounds and is a powerful aid to the planning of synthetic strategies.² Recently Hofmann and Schmidt³ described the interesting isolobal analogy between the cyclopentadienyl anion $(C_5H_5)^-$ and the tricarbonyl metalate anions $[M(\eta^5-C_5H_5)(CO)_3]^-$, (M = Cr, Mo, W), in which the transition metals have a d⁶ configuration.

Structures in which the $C_5H_5^-$ and $[M(\eta^5-C_5H_5)(CO)_3]^-$ fragments can replace each other are shown in (A)—(C).^{4–6} The mononuclear systems $[M(PR_3)_2]^+$ (M = Ni, Cu, Rh), $[Ni(\eta^5-C_5H_5)(CO)]^+$, and $[Co(\eta^4-C_4Me_4)]^+$ can function as binding partners towards the $[M(\eta^5-C_5H_5)(CO)_3]^-$ fragment,

where it has been recognised that the latter can function as a two-, four- or six-electron donor. $^{1,3,7-11}$

In recent papers we have shown that the triphosphacyclopentadienyl ring $(P_3C_2But_2)$ (X) can act as an η^5 -ligand in a variety of transition metal complexes typified by $[Fe(\eta^5-P_3C_2But_2)_2],^{12}$ $[Fe(\eta^5-P_3C_2But_2)(\eta^5-P_2C_3But_3)],^{12}$ $[Cr(\eta^5-P_3C_2But_2)_2],^{13}$ $[Fe(\eta^5-C_5H_5)(\eta^5-P_3C_2But_2)],^{14}$ $[Co(\eta^5-P_3C_2But_2)-(\eta^4-P_3C_2But_2H)],^{15}$ $[Ni(\eta^5-P_3C_2But_2)(\eta^3-P_2C_3But_3)],^{16}$ and as an η^1 -ligand in complexes of the type $[PtI(P_3C_2But_2)(PPh_3)_2],$ $[PtCl(P_3C_2But_2)(PEt_3)_2],$ and $[Pt(P_3C_2But_2)_2(PEt_3)_2],^{17,18}$

A further ligating feature, not available to the η^5 -C₅H₅ analogues, is the use of the lone pair of electrons on one of the

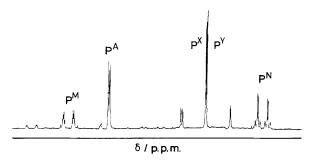


Figure 1. The $^{31}P\{^{1}H\}$ NMR spectrum of *trans*-[PtCr₂Cl(η^{1} - η^{5} -P₃C₂·Bu^t₂)(CO)₃(CO)₅(PEt₃)₂] (VII).

phosphorus atoms in the ring to interact with a second metal centre as in $[Fe(\eta^5-C_5H_5)(\eta^5-P_3C_2Bu^t_2)W(CO)_5]$. We now describe further novel features of the $(\eta^5-P_3C_2Bu^t_2)$ ring system that are distinct from its η^5 -cyclopentadienyl analogue in its ligating behaviour towards transition metals.

Treatment of the lithium salt of $(P_3C_2Bu^t_2)^-$ in dimethoxyethane with an equivalent quantity of $[M(CO)_6]$ (M = Cr, Mo,W) gives the η^1 -complexes Li[M(CO)₅(η^1 -P₃C₂But₂)], (I) M = Cr, (II) M = Mo, (III) M = W, which have not been isolated but their structures have been assigned on the basis of their ³¹P NMR spectra.† At higher temperatures complexes (I)—(III) react further with $[M(CO)_6]$ to give the deep red coloured η^1 - η^5 -ligated complexes Li[M(CO)₅M(CO)₃(η^1 - η^5 -P₃C₂- Bu_{2}^{t}], (IV) M = Cr, (V) M = Mo, and (VI) M = W (see Scheme 1),† which on treatment with [PtCl₂(PEt₃)₂] for several days gave deep red complexes trans-[PtM₂Cl(η^1 - η^5 - $P_3C_2Bu^t_2)(CO)_3(CO)_5(PEt_3)_2], (VII) M = Cr, (VIII) M = Mo, and (IX) M = W. The <math>^{31}P\{^1H\}$ NMR spectrum of (VII) is presented in Figure 1. Treatment of the complex trans- $[PtCl(\eta^1-P_3C_2Bu^t_2)(PEt_3)_2]$, $^{18}(X)$, with $[M(CO)_6]$ at elevated temperatures also leads to the formation of (VII)—(IX).¹⁹ Toluene solutions of complexes (VII)—(IX) undergo a further reaction and elimination of [M(CO)₅(PEt₃)] to yield orange crystals of the dimeric clusters [Pt₂M₂(P₃C₂Bu^t₂)₂- $(CO)_6(PEt_3)_2$] as toluene solvates, (XI) M = Cr, (XII) M = CrMo, (XIII) M = W [v(CO), nujol mull, (XI) 1950s, 1890w,1870w; (XII) 1950s, 1920w, br., 1890w, 1875m; (XIII) 1950s, 1890w, 1870m cm⁻¹].

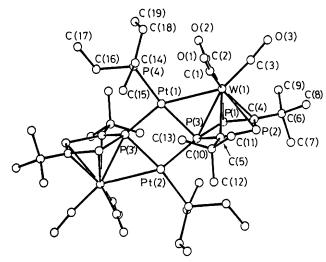


Figure 2. The molecular structure of $[Pt_2W_2(P_3C_2Bu_2^I)_2(CO)_6(PEt_3)_2]$ (XIII).

A single crystal X-ray structure determination on (XIII)‡ revealed the molecular structure shown in Figure 2. Interestingly the reaction of (I)—(III) with $[PtCl_2(PEt_3)_2]$ led to the loss of the $[M(CO)_5]$ fragment and formation of the known complex trans- $[PtCl(\eta^1-P_3C_2But_2)(PEt_3)_2]$ (X). 18

The most interesting features of the structure of (**XIII**) are: (i) the bridging nature of the $(P_3C_2Bu^t_2)$ rings with respect to the platinum atoms, (ii) the absence of any Pt-Pt bond, and (iii) unexpected differences compared to the known structure of $[Pt_2Cr_2(C_5H_5)_2(CO)_6(PEt_3)_2]$, (**XIV**), reported previously by Braunstein *et al.*²⁰ [see structure (**C**)].

An important factor responsible for the electronic relationship between $C_5H_5^-$ and the $[M(C_5H_5)(CO)_3]^-$ (M = Cr, Mo, W) systems relates to the HOMO 1a, and 1e orbitals of the latter which have d_{z^2} , $d_{x^2-y^2}$, and d_{xy} metal character and also contain bonding contributions from the π^* of the 3 CO ligands mixed into these MOs. The areas of the wave functions of $[M(C_5H_5)(CO)_3]^-$ which are available for bonding to other fragments involve both the C atoms of the carbonyls and the metal centre of the second ML_n fragment³ as found in (C) typified by the complex $[Pt_2Cr_2(C_5H_5)_2(CO)_6(PEt_3)_2]$, (XIV).

In (XIII), however, although it is potentially isolobal with (XIV), a different structure results because of the ready availability of the lone pair of electrons on each of the two directly bonded P atoms of the $P_3C_2But_2$ rings which are η^5 -ligated to the $[W(CO)_3]$ units. In this case each Pt in (XIII) is directly bonded to tungsten and one phosphorus of the $P_3C_2But_2$ ring and the 3 COs attached to W play no bonding role towards the $[Pt(PEt_3)]$ moiety.

Similar structural differences are also to be expected in related complexes when the $P_3C_2But_2$ ring replaces its C_5H_5 analogue, and this is being studied further.

‡ Crystal data for $C_{38}H_{66}O_6P_8Pt_2W_2\cdot C_2H_8$: M=1716.8, monoclinic, space group $P2_1/n$, a=16.011(4), b=11.161(3), c=17.225(5) Å, $\beta=113.05(2)^\circ$, U=2832.5 Å³, Z=2, $D_c=2.01$ g cm⁻³. Data were collected using monochromated Mo- K_α radiation, $\lambda=0.71069$ Å, $\mu=93.8$ cm⁻¹ on an Enraf-Nonius CAD4 diffractometer. A total of 4169 unique reflections were measured and 2521 with $|F^2| > 3\sigma(F^2)$ used in the refinement. The structure was solved by routine heavy atom methods and non H-atoms refined by a full matrix least squares with only Pt and W atoms anisotropic. The final residuals were R=0.042, $R_w=0.054$. Atomic co-ordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1.

[†] ${}^{3I}P\{^{I}H\}$ NMR data (referenced to H₃PO₄), for (I): δPA 162.3, δPB 192.6 p.p.m., J_{pApB} 46 Hz; (II), δPA 153.2, δPB 186.5 p.p.m., J_{pApB} 45 Hz; (III), δPA 245.1, δPB 207.9 p.p.m., J_{pApB} 38 Hz. For (IV): δPA 86.2, δPB 80.5 p.p.m., J_{pApB} 45 Hz; (V), δPA 86.8, δPB 68.8 p.p.m., J_{pApB} 44 Hz; (VI), δPA 65.4, δPB 27.5 p.p.m., J_{pApB} 46 Hz. For (VII): δPA 43.1 p.p.m., J_{pApM} 51, J_{pApN} 50 Hz; δPM 55.5 p.p.m., J_{pIPM} 4366, J_{pMpA} 451 Hz; δPN -5.7 p.p.m., J_{PIPN} 176, J_{pNpM} 456, J_{pNpM} 35 Hz; δPX 12.3 p.p.m., J_{PIPX} 2270, J_{pXpM} 28 Hz; δPY 12.1 p.p.m., J_{PIPY} 2205, J_{pYpM} 28 Hz. For (VIII): δPA 51.6 p.p.m., J_{PAPM} 46, J_{pApN} 36 Hz; δPM 49.0 p.p.m., J_{PIPM} 3320, J_{pMpN} 461 Hz; δPN 4.0 p.p.m., J_{PIPM} 212, J_{pNpM} 458, J_{pNpA} 36 Hz; δPX 11.1 p.p.m., J_{PIPX} 2254, J_{pXpM} 23 Hz; δPY 16.8 p.p.m., J_{PIPY} 2300, J_{pYpM} 39 Hz. For (IX): δPA 30.6 p.p.m., J_{pApM} 20, J_{pApN} 17 Hz; δPM 26.7 p.p.m., J_{PIPM} 3360, J_{pMpN} 445 Hz; δPN 24.4 p.p.m., J_{PIPN} 173, J_{pNpM} 451, J_{pNpA} 34 Hz; δPX 10.9 p.p.m., J_{PIPX} 2200, J_{pXpM} 23 Hz; δPY 8.2 p.p.m., J_{PIPX} 2300, J_{pXpM} 37 Hz. for (VIII): δPA 51.5 p.p.m., J_{PIPX} 2200, J_{pXpM} 28 Hz; δPX 10.9 p.p.m., J_{PIPX} 2200, J_{pXpM} 23 Hz; δPX 200, J_{pXpM} 24 Hz; δPX 10.9 p.p.m., J_{PIPX} 2200, J_{pXpM} 25 Hz; δPX 201, J_{PXPX} 200, J_{PXPM} 36 Hz; δPX 10.9 p.p.m., J_{PIPX} 2200, J_{PXPM} 3450, J_{PYPN} 2310, J_{PYPX} 2010 Hz; for (VIII): δPt -2906.0 p.p.m., J_{PIPM} 3450, J_{PIPM} 3380, J_{PIPN} 207, J_{PIPX} or pY 2206 Hz; for (IX): δPt -2941.0 p.p.m. J_{PIPM} 3380, J_{PIPN} 207, J_{PIPX} or pY 2206 Hz; for (IX): δPt -2941.0 p.p.m. J_{PIPM} 3380, J_{PIPN} 207, J_{PIPX} or pY 206 Hz; for

319

We thank the S.E.R.C. for financial support for this work and Johnson Matthey for a loan of platinum salts.

Received, 16th October 1989; Com. 9/04455H

References

- 1 R. Hoffmann, Angew. Chem., Int. Ed. Engl., 1982, 21, 711.
- 2 F. G. A. Stone, Angew. Chem., Int. Ed. Engl., 1984, 23, 85 and references therein.
- 3 P. Hofmann and H. R. Schmidt, Angew. Chem., Int. Ed. Engl., 1986, 25, 837.
- 4 H. Werner, Adv. Organomet. Chem., 1981, 19, 155.
- 5 H. Werner, H.-J. Kraus, and P. Thometzek, Chem. Ber., 1982,
- 6 R. Bender, P. Braunstein, J.-M. Jud, and Y. Dusausoy, Inorg. Chem., 1983, 22, 3394.
- 7 T. Madach and H. Vahrenkamp, Chem. Ber., 1980, 113, 2675. 8 L. Carlton, W. E. Lindsell, K. J. McCullough, and P. N. Preston, Organometallics, 1985, 4, 1138.
- 9 L. Carlton, W. E. Lindsell, K. J. McCullough, and P. N. Preston, J. Chem. Soc. Dalton Trans., 1984, 1693.

- 10 P. Braunstein, J. Fischer, D. Matt, and M. Pfeffer, J. Am. Chem. Soc., 1984, 106, 410.
- 11 P. Härter, H. Pfisterer, and M. L. Ziegler, Angew. Chem., Int. Ed. Engl., 1986, 25, 839.
- 12 R. Bartsch, P. B. Hitchcock, and J. F. Nixon, J. Chem. Soc., Chem. Commun., 1987, 1146.
- 13 R. Bartsch, P. B. Hitchcock, and J. F. Nixon, J. Organomet. Chem., 1988, 356, C1.
- 14 R. Bartsch, P. B. Hitchcock, and J. F. Nixon, J. Organomet. Chem., 1988, 344, C37.
- R. Bartsch, P. B. Hitchcock, and J. F. Nixon, J. Chem. Soc., Chem. Commun., 1988, 819.
- R. Bartsch, P. B. Hitchcock, and J. F. Nixon, J. Organomet. Chem., 1989, 373, C17.
- 17 R. Bartsch, D. Carmichael, P. B. Hitchcock, M. F. Meidine, J. F. Nixon, and G. J. D. Sillett, J. Chem. Soc., Chem. Commun., 1988, 1615.
- 18 P. B. Hitchcock, J. F. Nixon, and G. J. D. Sillett, New J. Chem., 1989, 13, 353.
- 19 P. B. Hitchcock, J. F. Nixon, and G. J. D. Sillett, unpublished results.
- 20 R. Bender, P. Braunstein, J.-M. Jud, and Y. Dusausoy, Inorg. Chem., 1984, 23, 4489.