
SOME NEW SYMPATHOMIMETIC AMINES: N-CYCLOALKYL DERIVATIVES OF 1,2,3,4-TETRAHYDRO-2-NAPHTHYLAMINE AND OF NORADRENALONE*

By DIANA M. TEMPLE[†]

Several cycloalkyl derivatives of 1,2,3,4-tetrahydro-2-naphthylamine (I; R = cyclopentyl, R' = H or CH_3 ; R = cyclobutylmethyl, R' = H) have been synthesized for the purpose of studying their sympathomimetic or sympatholytic actions, and possible antagonism to serotonin and histamine, following earlier findings with analogous compounds.¹⁻³ The related amides [I; R = cyclobutylcarbonyl (COC_4H_7) , cyclopropylcarbonyl (COC_3H_5) , pivaloyl $(COC(CH_3)_3)$, R' = H] might also be expected, from the findings of Marini-Bettolo *et al.*⁴ on similar amides, to have sympatholytic and hypotensive action.

Some N-cycloalkyl noradrenalone derivatives (II; R = cyclobutyl, cyclopentyl, cyclohexyl, 1,2,3,4-tetrahydro-2-naphthyl, and *p*-acetylphenyl) were also prepared as potential sympathomimetic agents for pharmacological study. The N-cyclohexyland N-cyclopentyl-noradrenalones have been previously described by Corrigan *et al.*⁵

Experimental

Melting points were taken on a Kofler block and are uncorrected. Infrared spectra were determined in Nujol mulls using a Perkin–Elmer Infracord spectrophotometer. Microanalyses were performed by the Australian Microanalytical Service, Melbourne.

(a) N-Cyclopentyl-1,2,3,4-tetrahydro-2-naphthylamine

A mixture of 1,2,3,4-tetrahydro-2-naphthylamine $(3 \cdot 7 \text{ g})$ and cyclopentyl bromide $(1 \cdot 9 \text{ g})$ in dry xylene (20 ml) was refluxed for 30 hr. The precipitated amine hydrobromide $(2 \cdot 4 \text{ g}, 86\%)$ was filtered, the xylene evaporated from the filtrate, and the residue distilled. The product $(1 \cdot 66 \text{ g})$ had b.p. $126^{\circ}/0.7$ mm, and with ethereal HCl deposited a *hydrochloride*, crystallized from ethanol/ether, m.p. $178-180^{\circ}$ (Found: C, $71 \cdot 6$; H, $8 \cdot 9$; N, $5 \cdot 7$. $C_{15}H_{22}$ ClN requires C, $71 \cdot 6$; H, $8 \cdot 8$; N, $5 \cdot 6\%$).

- * Manuscript received November 21, 1966.
- † Department of Pharmacology, University of Sydney.
- ¹ Cymerman Craig, J., Moore, B., and Ritchie, E., Aust. J. Chem., 1959, 12, 447.
- ² Cymerman Craig, J., Moore, B., and Temple, D. M., Aust. J. Chem., 1960, 13, 463.
- ³ Pennefather, J. N., and Thorp, R. H., Archs int. Pharmacodyn. Thér., 1959, 121, 355.
- ⁴ Marini-Bettolo, G. B., Chiavarelli, S., and Bovet, D., Rc. Ist. sup. Sanità, 1952, 15, 767.
- ⁵ Corrigan, J. R., Langermann, M. J., and Moore, M. L. J. Am. chem. Soc., 1949, 71, 530.

Aust. J. Chem., 1967, 20, 601-4

(b) N-Cyclopentyl-1,2,3,4-tetrahydro-N-methyl-2-naphthylamine

The above amine (1.66 g) was methylated in the usual manner¹ with formaldehyde and formic acid. The product had b.p. $117-128^{\circ}/0.25$ mm, and with ethereal HCl gave a *hydrochloride* as prisms of monohydrate from ethanol/ether, m.p. $144-146^{\circ}$ (Found: C, 67.8; H, 9.2; N, 5.15. $C_{16}H_{24}ClN,H_2O$ requires C, 67.8; H, 9.2; N, 5.0%).

(c) N-(1,2,3,4-Tetrahydro-2-naphthyl)cyclobutanecarboxamide

A solution of cyclobutanecarboxylic acid chloride $(1 \cdot 2 \text{ g}, 0 \cdot 01 \text{ mole})$, prepared from cyclobutanecarboxylic acid⁶ with thionyl chloride, and 1,2,3,4-tetrahydro-2-naphthylamine $(2 \cdot 9 \text{ g}, 0 \cdot 02 \text{ mole})$ in chloroform (30 ml) was refluxed for 2 hr. The mother liquor from the precipitated amine hydrochloride yielded on evaporation a crystalline residue $(2 \cdot 25 \text{ g})$ which recrystallized from light petroleum as white *prisms* $(1 \cdot 1 \text{ g})$, m.p. 105–106° (Found: C, 78.6; H, 8.4; N, 6.7. C₁₈H₁₉NO requires C, 78.6; H, 8.4; N, 6.1%). ν_{max} 3250, 1655 cm⁻¹.

(d) N-Cyclobutylmethyl-1,2,3,4-tetrahydro-2-naphthylamine

The above amide (0.9 g) was reduced with lithium aluminium hydride (0.3 g) in anhydrous ether. The reduction product with ethereal HCl formed a *hydrochloride* (0.65 g) which recrystallized from ethanol as white leaflets, m.p. 255–257° (Found: C, 71.2; H, 8.5; N, 5.8. C₁₅H₂₂ClN requires C, 71.55; H, 8.8; N, 5.6%). ν_{max} 3350, 1590 cm⁻¹.

(e) N-(1,2,3,4-Tetrahydro-2-naphthyl)cyclopropanecarboxamide

A mixture of cyclopropylcarboxylic acid chloride (1.05 g, 0.01 mole), 1,2,3,4-tetrahydro-2-naphthylamine (1.47 g, 0.01 mole) and pyridine (0.8 g, 0.01 mole) in chloroform (15 ml) was refluxed for 2 hr. The mother liquor from the hydrochloride precipitate was washed with dilute HCl, Na₂CO₃ solution, and water, and evaporated. The residue crystallized as white *needles* (0.87 g) from light petroleum, m.p. 132–135° (Found: C, 78.1; H, 8.0; N, 6.5. C₁₄H₁₇NO requires C, 78.2; H, 7.9; N, 6.8%). ν_{max} 3250, 1660, 1035 cm⁻¹.

(f) 1,2,3,4-Tetrahydro-N-pivaloyl-2-naphthylamine

A mixture of pivalic acid chloride $(2 \cdot 4 \text{ g}, 0 \cdot 02 \text{ mole})$, 1,2,3,4-tetrahydro-2-naphthylamine $(2 \cdot 94 \text{ g}, 0 \cdot 02 \text{ mole})$, and pyridine $(1 \cdot 6 \text{ g}, 0 \cdot 02 \text{ mole})$ in chloroform (20 ml) was refluxed for 1 hr, and worked up as in (e). The residue $(2 \cdot 1 \text{ g})$ recrystallized from light petroleum as white needles $(1 \cdot 0 \text{ g})$, m.p. 117–120° (Found: C, 77 · 5; H, 9 · 0; N, 6 · 4. C₁₅H₂₁NO requires C, 77 · 9; H, 9 · 1 N, 6 · 1 %). ν_{max} 3280, 1660 cm⁻¹.

(g) Cyclobutylamine Salt of 4-Chloroacetylcatechol

A solution of cyclobutylamine $(2 \cdot 9 \text{ g})$ in isopropanol (20 ml) was added slowly with stirring to a solution of 4-chloroacetylcatechol (3 \cdot 7 g) in isopropanol (50 ml). The amine salt of the phenol precipitated immediately, and was filtered and washed with ether, to give off-white *prisms* of m.p. 100–104°, 4 · 75 g (93%) (Found: C, 55 · 8; H, 6 · 3; N, 5 · 2. C₁₂H₁₆ClNO₃ requires C, 55 · 9; H, 6 · 3; N, 5 · 4%). λ_{max} 206, 232, 280 m μ , ν_{max} 3210, 3120, 1670, 1600 cm⁻¹.

(h) Other Addition Compounds of 4-Chloroacetylcatechol with Primary Amines

The following salts of 4-chloroacetylcatechol were prepared similarly, using 1 equiv. of amine to one of catechol derivative, which, from alcohol or anhydrous ether, gave an almost quantitative yield of amine salt in each case:

Cyclohexylamine salt, m.p. 125-126° (Found: C, 58.6; H, 7.4; N, 5.0. C₁₄H₂₀ClNO₃ requires C, 58.8; H, 7.1; N, 4.9%).

Cyclopentylamine salt, m.p. 117-119° (Found: C, 57.8; H, 6.8; N, 5.2. $C_{13}H_{18}CINO_3$ requires C, 57.5; H, 6.7; N, 5.2%).

⁶ Heisig, G. B., and Stodola, F. H., Org. Synth., 1955, Coll. Vol. III, 213.

 $Cyclopropylamine \ salt, \ m.p. \ 95-97^{\circ} \ (Found: \ C, \ 54\cdot 6; \ H, \ 5\cdot 9; \ N, \ 5\cdot 7. \ C_{11}H_{14}ClNO_3 \ requires \ C, \ 54\cdot 2; \ H, \ 5\cdot 8; \ N, \ 5\cdot 8\%).$

Cyclopropylmethylamine salt, m.p. 108–110° (Found: C, $53 \cdot 6$; H, $6 \cdot 2$. $C_{12}H_{16}CINO_3, \frac{1}{2}H_2O$ requires C, $54 \cdot 0$; H, $6 \cdot 4\%$).

$(i) \ {\rm N-} Cyclobuty lnoradrenal one \ Hydrochloride$

The cyclobutylamine salt (0.4 g) of 4-chloroacetylcatechol, prepared as described in (g) or (h) above, was dissolved in isopropanol (5 ml) and refluxed for 3 hr. It was evaporated to 2.5 ml and chilled, when the *product* (85 mg) precipitated. It was washed with ether and recrystallized from ethanol/ether, m.p. 225-228° (Found: C, 56.1; H, 6.5; N, 5.2. C₁₂H₁₈ClNO₃ requires C, 55.9; H, 6.3; N, 5.4%). λ_{max} 208, 233, 279, 309 m μ (ϵ 7500, 14500, 8600, 7000), ν_{max} 3120, 1680, 1600 cm⁻¹.

The same product resulted when the catechol salt was heated in isopropanol in a sealed tube at 100° for 1.5 hr (yield 28%).

(j) N-Cyclopentylnoradrenalone

A solution in isopropanol (20 ml) of 4-chloroacetylcatechol ($3 \cdot 0$ g) was heated to boiling and cyclopentylamine (4 g) added, with mechanical stirring. After $0 \cdot 5$ hr refluxing the solution was cooled, the resulting precipitate ($3 \cdot 7$ g) filtered, washed with isopropanol, and recrystallized from acetone/methanol to give *needles* of the product free base (m.p. 182°), which did not lose water of crystallization on vacuum drying (Found: C, $65 \cdot 1$; H, $7 \cdot 4$; N, $5 \cdot 5$. C₁₄H₁₇NO₃ requires C, $66 \cdot 4$; H, $7 \cdot 3$; N, $5 \cdot 95$. C₁₄H₁₇NO₃, $\frac{1}{4}$ H₂O requires C, $65 \cdot 1$; H, $7 \cdot 4$; N, $5 \cdot 8 \cdot \%$). λ_{max} 208, 232, 280, 310 m μ (ϵ 11300, 9700, 7000, 6700). The free base ($0 \cdot 9$ g) with HCl gave the hydrochloride ($0 \cdot 44$ g), which crystallized from ethanol/ether and 90% isopropanol to give needles, m.p. 205-207° (lit.⁵ 213-214°) (Found: C, $57 \cdot 8$; H, $6 \cdot 7$; N, $5 \cdot 0$. Calc. for C₁₈H₁₈ClNO₈: C, $57 \cdot 5$; H, $6 \cdot 7$; N, $5 \cdot 2\%$).

(k) N-Cyclohexylnoradrenalone

Similarly to (j), 4-chloroacetylcatechol (3 \cdot 7 g) with cyclohexylamine (6 ml) yielded a basic product of m.p. 187–188°, which remained hydrated after repeated drying at 100°/1 mm (Found: C, 66 \cdot 2; H, 8 \cdot 0, 7 \cdot 6; N, 5 \cdot 1, 5 \cdot 0. C₁₄H₁₉NO₃ requires C, 67 \cdot 4; H, 7 \cdot 7; N, 5 \cdot 6. C₁₄H₁₉NO₃, $\frac{1}{2}$ H₂O requires C, 66 \cdot 25; H, 7 \cdot 55; N, 5 \cdot 5%). λ_{max} 207, 232, 280, 311 m μ (ϵ 9500, 7900, 5600, 5400).

Alternatively, a solution of 3,4-diacetoxy- ω -iodoacetophenone (0.7 g) (prepared from the chloro analogue using KI in methanol), and cyclohexylamine (0.19 g) in acetone (20 ml) was boiled with excess solid K₂CO₃ (2.3 g) for 4 hr. The product (117 mg) had m.p. 179–187° (dec.), and an infrared spectrum identical to that of the free base of m.p. 184–187°, described above (ν_{max} 3420, 1655, 1600 cm⁻¹).

Treatment of the free base with ethanolic HCl gave the hydrochloride as white needles from ethanol/ether, m.p. $242-245^{\circ}$ (lit.⁵ 256-258°) (Found: C, 58·4; H, 6·95; N, 4·7. Calc. for C₁₄H₂₀ClNO₃: C, 58·8; H, 7·05; N, 4·9%).

Hydriodide.—4-Iodoacetylcatechol $(1 \cdot 0 \text{ g})$ (prepared from 4-chloroacetylcatechol with KI/methanol) in ether (50 ml) was neutralized with cyclohexylamine $(0 \cdot 7 \text{ g})$ to give the insoluble salt $(1 \cdot 15 \text{ g})$, m.p. $111-112^{\circ}$. This addition compound $(0 \cdot 5 \text{ g})$ was suspended in isopropanol (5 ml) which was boiled for 1 hr. On concentration the resulting solution deposited shining cream-coloured *leaflets* (32 mg) which were recrystallized from ethanol/ether, m.p. 239-240° (softened 227°) (Found: C, 44 \cdot 8; H, 5 \cdot 5; N, 3 \cdot 8. C₁₄H₂₀INO₃ requires C, 44 \cdot 6; H, 5 \cdot 3; N, 3 \cdot 7%).

(l) N-Cyclopropylnoradrenalone Hydrochloride

The cyclopropylamine salt of 4-chloroacetylcatechol $(1 \cdot 0 \text{ g})$ was refluxed in isopropanol solution (4 ml) in a current of nitrogen for 3 hr. It was chilled, then concentrated, and the tar-like residue, which showed evidence of decomposition, was triturated in the cold, successively with acetone, methanol, ethanol, and finally with 30% ethanol/ether, in which a yellow solid $(0 \cdot 1 \text{ g})$

SHORT COMMUNICATIONS

was produced, which crystallized from ethanol/ether (m.p. $180-200^{\circ}$). This was treated in methanol with alcoholic HCl and the hydrochloride crystallized twice from ethanol/ether to give white *needles* (6 mg), m.p. 200-204° (Found: C, 53.6; H, 5.95. C₁₁H₁₄ClNO₃ requires C, 54.2; H, 5.8%).

(m) N-(1,2,3,4-Tetrahydro-2-naphthyl)noradrenalone Hydrochloride

A solution of 1,2,3,4-tetrahydro-2-naphthylamine (1·18 g) in 60% ethanol (4 ml) was added dropwise to a solution of 4-chloroacetylcatechol (1·87 g) in ethanol (6 ml) at 5–10°. The resulting solution was heated under reflux for 5 hr, cooled, acidified with HCl, and evaporated at reduced pressure. The residue was triturated with a little ethanol, to give a light-coloured solid (1·0 g) which crystallized from ethanol as *leaflets* of m.p. 219–222° (Found: C, 64·7; H, 6·2; N, 4·0. C₁₈H₂₀ClNO₃ requires C, 64·8; H, 6·0; N, 4·2%). λ_{max} 231, 274, 308 m μ , ν_{max} 3500, 3250, 1670 cm⁻¹.

(n) N-(p-Acetylphenyl) noradrenalone

Using the same procedure as (j), *p*-aminoacetophenone $(2 \cdot 16 \text{ g})$ with 4-chloroacetylcatechol $(1 \cdot 5 \text{ g})$ yielded $1 \cdot 3 \text{ g}$ of white *leaflets*, m.p. 218–219° from isopropanol (Found: C, 67 \cdot 2; H, 5 \cdot 3; N, 4 \cdot 9. C₁₆H₁₅NO₄ requires C, 67 \cdot 4; H, 5 \cdot 3; N, 4 \cdot 9%). ν_{max} 3300, 1670, 1590 cm⁻¹.