THE VIBRATIONAL SPECTRA OF N-CI MALEIMIDE

T. WOLDBAEK and P. KLABOE

Department of Chemistry, University of Oslo, Oslo 3 (Norway)

C. J. NIELSEN

Chemical laboratory V, the H. C. Ørsted Institute, DK-2100 Copenhagen (Denmark) (Received 26 November 1974)

ABSTRACT

The infrared spectra of N—Cl maleimide as a Nujol mull and dissolved in various solvents were recorded between 4000 and 30 cm⁻¹. Raman spectra of the crystalline solid and saturated solution in CH_3CN were recorded and semiquantitative polarization measurements were made.

The fundamental frequencies have been tentatively assigned in terms of C_{2v} symmetry, based upon Raman polarization data and analogies with the spectra of maleimide and maleic anhydride. A force field was derived by initially transferring force constants from maleimide. After small iterations a satisfactory correspondance was achieved between the observed and calculated in-plane modes whereas larger discrepancies remained for some of the out-of-plane vibrations.

INTRODUCTION

As a continuation of our vibrational spectroscopic studies of maleic anhydride [1, 2] and halogenated maleic anhydrides [3, 4] we have recently reported the results for maleimide and N—D maleimide [5]. We felt it would be of value to prepare derivatives of maleimide leaving the unsaturated heterocyclic ring virtually unchanged and have therefore synthesized the N—Cl and N—Br maleimides. The spectra of these compounds were compared with those of maleimide [5] and the N-halogenated succinimides [6] to determine the effect of the electronegative halogen substituents on the cyclic imides. However, unlike the N-halogenated succinimides which are stable compounds of practical importance in organic synthesis, the corresponding maleimides, which to our knowledge have not been prepared earlier, were fairly unstable compounds. Particularly N—Br maleimide decomposed rapidly at room temperature both as a crystalline solid and in solution. Therefore, it was not possible to obtain reproducible spectra for this compound.

The present paper will refer closely to our previous work on maleimide, N-D maleimide [5] and maleic anhydride [2].

EXPERIMENTAL

N—Cl maleimide was prepared from maleimide dissolved in acetic acid and potassium hypochlorite at -20° C, in a reaction analogous to one described for synthesizing N—Cl succinimide [7]. The mixture was kept at 0°C for an hour. The precipitate was dried in vacuum and recrystallized twice from benzene just prior to use (m.p. 103°C). A similar procedure (maleimide + potassium hypobromite) for preparing N—Br maleimide gave a product which was purified by sublimation at 50°C at 0.02 torr (m.p. 116°C). However, the infrared and Raman spectra of this compound changed rapidly with time and will therefore not be reported in the present communication.

Saturated solutions of N—Cl maleimide in CS_2 , CCl_4 , CH_2Cl_2 , C_6H_6 and CH_3CN were recorded in the infrared. The sample had highest solubility in CH_3CN and this solvent was employed for the Raman recordings. No significant spectral changes with time were detected for any of the solutions. Attempts to prepare pellets of N—Cl maleimide in KBr, KI or CsI matrices were unsuccessful since rapid spectral variations were observed. Nujol mulls were reasonably stable, but slight spectral changes occurred with time. These spectral changes were avoided by cooling the mulls to $-80^{\circ}C$ in a cryostat, also leading to sharper peaks and crystal splitting. The pure crystalline solid appeared quite stable at room temperature when irradiated with the 4880 or 5143 Å argon laser lines.

The infrared, far infrared and Raman spectrometers, cells, etc., have been described [2, 5].

RESULTS

Since N—Cl maleimide was prepared and studied for the first time, no structural data are available. Only slight deviations from planarity in the crystalline state were reported for the N-halogenated succinimides [8, 9] and we have assumed C_{2v} (planar structure) for N—Cl maleimide as well as for maleimide itself [5]. However, no definite conclusions about the symmetry can be drawn from the present spectra, and point groups C_s (Cl situated outside the plane) or C_2 (twisted ring) cannot be excluded. The 24 fundamentals of N—Cl maleimide will be divided into the following symmetry species: $9a_1 + 3a_2 + 4b_1 + 8b_2$ corresponding to those of maleimide. With no infrared spectra of the vapour or oriented crystalline film available the assignments were partly based upon the incomplete Raman polarization data. Further support was provided by the results of the normal coordinate analysis as well as comparison with maleimide, N—D maleimide [5], succinimide, N-halogenated succinimides [6] and maleic anhydride [1, 2].

Obviously, the *N*-halogenated succinimides or maleimides cannot form Hbonding like the parent molecules. Therefore, we expect the *N*-halogenated derivatives to be monomeric in all the states of aggregation and no abnormal frequency shifts would be expected.

Spectral interpretations

The infrared and Raman spectra of crystalline N—Cl maleimide are shown in Figs. 1 and 2, respectively. The observed frequencies are listed in Table 1, whereas the assigned fundamentals are compared with the results of the force constant calculations in Table 2. In Table 3 the fundamental frequencies of maleic anhydride [1, 2], maleimide, N—D and N—Cl maleimide are compared. Because of the striking similarity between the present spectra and those of maleimide [5] only brief comments regarding the interpretations will be given.

The C—H stretching modes are found at 3111 (b₂) and 3105 cm⁻¹ (a₁) and the C=O stretches at 1765 (a₁) and 1705 cm⁻¹ (b₂). Two Raman bands were observed around 1600 cm⁻¹ (only one band for maleimide) and the most intense at 1581 cm⁻¹ was attributed as v_3 characteristic of the C=C stretch.

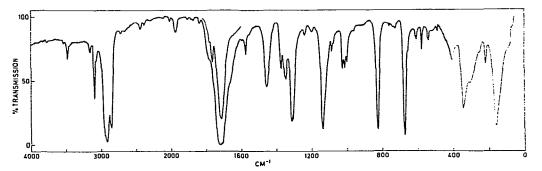


Fig. 1. The infrared spectrum of N–Cl maleimide at ambient temperature as Nujol mull $(4000-400 \text{ cm}^{-1})$ and polyethylene pellet $(400-30 \text{ cm}^{-1})$.

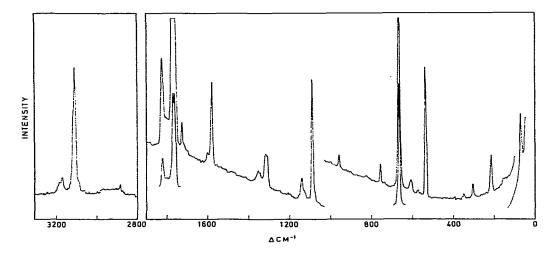


Fig. 2. The Raman spectrum of solid N-Cl maleimide.

TABLE 1

Infrared^a and Raman spectral data for N-Cl maleimide

Infrared		Raman		Assignments ^b	
Solid ~-80°C	Solution	Solid	Solution		
Nujol	CCl ₄		CH ₃ CN		
3480 w ^c	3502 w			$v_2 + v_{18}$	B ₂
	3440 w			$2 \times \nu_{18}$	\mathbf{A}_{1}
3170 vw sh		3181 w			
3160 w	3160 vw	3166 m	3173 m P	$2 \times \nu_3$	A ₁ FR
3105 sh		3111 sh	3111 sh D	ν_{17}	b₂
3098 m	3100 w	3105 vs	3106 vs P	ν_{i}	ai
3072 vw sh		3084 w sh	3083 w P	$v_2 + v_4$	A,
		2881 w		$v_{3} + v_{4}$	$\mathbf{A}_{\mathbf{i}}$
		2000 w	2000 vw	2 × v ₆	A ₁
1984 w	1976 w			$\nu_{2} + \nu_{15}$	B1
1893 vw				$v_{3} + v_{9}$	A_1
1881 vw	1869 w	1882 w		$v_4 + v_8$	\mathbf{A}_{1}
1845 w	1838 w			$v_4 + v_{23}$	\mathbf{B}_{2}
		1827 vs	1826 vs P	$v_{20} + v_{22}$	A ₁ FR
1805 sh	1800 sh	1802 w		$v_7 + v_{20}$	B₂
1791 w sh				$v_6 + v_{13}$	В,
		1775 vs			
1765 m	1785 m	}	1779 vs P	ν,	a
		1768 vs			
1737 sh)		,			
1722 sh }	1740 vs	1729 m	1745 m sh D	ν_{18}	b₂
1705 vs					
,	1715 m	1719 w sh	1715 w sh	$v_3 + v_{24}$	\mathbf{B}_{2} FR
1700 sh		1700 w		$v_{21} + v_{22}$	A,
1670 vw sh	1663 w			$v_6 + v_{22}$	\mathbf{B}_{2}
	1594 w ^đ	1606 m	1601 w	$\nu_6 + \nu_8$	A, FR
1587 w				$v_8 + v_{21}$	B ₂
1579 w	1571 w ^d	1581 vs	1582 m P	ν ₃	a,
1575 vw sh				۳3	~ 1
1556 w	1550 w ^d	1559 w	1559 vw	$\nu_{21} + \nu_{23}$	$\mathbf{A}_{\mathbf{I}}$
	1490 vw ^d			$\nu_{10} + \nu_{23}$	B
1474 vw				$v_{9} + v_{20}$	B ₂
	1405 vw ^e			$v_{11} + v_{14}$	\mathbf{B}_{2}
1352 m	1347 m	1355 m	1350 w	$v_6 + v_9$	A, FR
1344 sh /	1011 III			6109	11 11
1318 s	1305 s	1320 s	1315 w	ν_4	aı
1309 s	,	1311 s		v_{19}	₽z
1242 w	1237 w ^e	1250 vw	1248 vw	$\nu_{10} + \nu_{12}$	Α,
1205 vw	1205 vw sh ^e	1208 w	1200 vw	$\nu_{22} + \nu_{23}$	A ₁
	1147 sh			$\nu_{21} + \nu_{24}$	\mathbf{A}_{1}
1146 s	1129 s	1143 s	1138 w	v_{20}	b,
1129 sh		1128 sh		$2 \times \nu_8$	A
1110 sh	1104 w sh^{f}			$v_{12} + v_{13}$	B2

 TABLE 1 (continued)

Infrared		Raman		Assignments ^b	
Solid ∼-80°C	Solution	Solid	Solution		
Nujol	CCl₄		CH ₃ CN		
1091 vwsh 1087 w	1098 w	1092 s	1087 s P	ν _s	aı
1077 w sh	1075 vw ^e			$v_{10} + v_{16}$	\mathbf{B}_{2}
1064 vw sh	1065 vw ^e			$2 \times v_{23}$	A,
1027 m	1017 m ^e	1032 vw		v21	bz
1010 m	1002 m ^e	1002 vw	1006 vw	ν_6	a,
1000 m	989 m ^e			$v_7 + v_9$	A ₁ FI
961 w		962 m		v_{10}	a,
940 vw				$v_{13} + v_{16}$	$\mathbf{A}_{\mathbf{i}}$
910 vw				$v_8 + v_9$	A ₁
850 vw	840 w sh ^f			$v_{14} + v_{15}$	A,
828 s	000 A	0.07			
823 s	820 s ^e	827 w	822 w	ν_{13}	b 1
757 vw		759 m	759 w	$\boldsymbol{\nu}_{11}$	a,
737 vw		738 vw		$v_8 + v_{24}$	B ₂
677 s	672 s	676 sh	678 sh D	v_{22}	b,
668 s sh	667 sh	667 s	663 s P	v_7	a,
660 m sh	657 m			ν ₁₄	b,
609 w)				-	-
603 w	590 vw ^e	608 m	604 m P	$2 \times \nu_{_{12}}$	A, FI
574 sh					
572 w	566 m ^e	576 w		ν_8	a,
565 w				0	•
541 w sh					
537 w	533 w ^e	538 m	538 s D	v_{23}	🗄 b2
535 w			00002	- 23	-1
417 w				$2 \times \nu_{15}$	А,
342 s ^g	338 m ^h	345 w	341 w P	ν_{9}	a,
305 sh		304 m	299 m D	ν_{12}	a2
215 m	207 w^{h}	217 s	213 m D	v_{15}	b,
158 s	144 s ^h	150 m	150 vw	v_{24}	b ₂
138 sh				ν_{16}	b,
77 w		79 s		lattice vib.	-1

^aThe weakest infrared bands in the regions $5000-3500 \text{ cm}^{-1}$ and $2800-2000 \text{ cm}^{-1}$ are omitted.

^bWhen available the combination frequencies and overtones are calculated from infrared solid data.

^cw, weak; m, medium; s, strong; v, very; bd, broad; sh, shoulder; P, polarized; D, depolarized; FR, Fermi resonance.

 $^{d}CH_{2}Cl_{2}$ solution.

^eCS₂ solution.

^fCH₃CN solution.

^gSolid state frequencies below 400 cm⁻¹ are from polyethylene (Rigidex) pellet.

 ${}^{h}C_{6}H_{6}$ solution.

TABLE 2	
---------	--

Species	and No.	^v calc ^a	^v obs	PED ^b
aı	ν_1	3107	3105	981c. d
	ν_2	1797	1765	32s + 30d + 24r
	ν_3	1581	1579	45s + 42d
	v_4	1315	1318	58a + 17b
	v_5	1045	1087	$42\phi + 34\psi$
	ν_6	997	1010	41r + 30b + 19s
	v_7	684	668	$47b + 25\alpha$
	ν_8	557	572	$24b + 20\alpha$
	v,	329	342	$37\xi + 34\eta$
a ₂	ν_{10}	970	961	$33\tau_7 + 17\pi_5 + 17\pi_4 + 16\tau$
	ν_{11}	627	757	$24\pi_1 + 19\pi_2 + 15\pi_8 + 15\pi_8$
	v_{12}	289	305	$35\tau_{10} + 32\tau_{2}$
b,	ν_{13}	905	828	$38\tau_{7} + 15\tau_{8}$
	ν_{14}	674	660	$22\tau_{5} + 20\pi_{1} + 16\pi_{2}$
	ν_{15}	211	215	$18\tau_{3} + 15\tau_{9}$
	ν_{16}	99	138	$27\tau_3 + 25\tau_1$
b ₂	v ₁₇	3100	3111	991
	ν_{18}	1690	1705	63s + 33r
	ν_{19}	1311	1309	$34\phi + 33s + 16\psi$
	ν_{20}	1149	1146	$83a + 16\alpha + 15r$
	<i>v</i> ₂₁	1024	1027	$22\psi + 17a + 16r$
	ν_{22}	660	677	$37a + 32\epsilon + 16\eta$
	ν_{23}	551	537	$36\xi + 25\eta + 15r$
	ν_{24}	155	158	85µ

Calculated $(v_{calc} \text{ cm}^{-1})$ and observed $(v_{obs} \text{ cm}^{-1})$ fundamentals and potential energy distribution (PED) for N—Cl maleimide

^aWhen possible frequencies are taken from the infrared spectra of the solid state. ^bThe potential energy distribution defined as $x_{ik} = 100 F_{ii}L_{ik}^2/\lambda_k$.

^eFor meaning of symbols, see Fig. 4, ref. 5.

^dThe coefficient indicates the total fraction of energy of the mode distributed among the equal coordinates, and terms below 15 are neglected.

The neighbouring bands at 1318 and 1309 cm⁻¹ of the solid are attributed as v_4 and v_{19} , respectively, although only one band was detected in solution. An alternative choice for v_4 is the medium intense band around 1350 cm⁻¹, but a comparison with the *N*-halogenated succinimides supports the former choice.

An intense infrared band at 1146 cm^{-1} was attributed as the asymmetric CNC stretch ν_{20} . The polarized Raman band at 1087 cm⁻¹ was assigned as ν_5 (mainly C—H deformation). Three medium intense infrared bands were observed around 1000 cm⁻¹. Those at 1027 and 1010 cm⁻¹, both having weak Raman counterparts, were tentatively considered to be the fundamentals ν_{21} and ν_6 , respectively, and the low frequency line at 1000 cm⁻¹ was interpreted as a combination band.

Medium intense Raman bands at 962, 759 and 304 cm⁻¹ had weak counterparts in the infrared crystal spectra (but none in solution) and they were accordingly assigned as the three a_2 modes ν_{10} , ν_{11} and ν_{12} in good agreement with the results for maleimide [5]. The four out-of-plane modes of species b_1 were rather uncertain, but were tentatively assigned to the infrared bands at 828, 660, 215 and 138 cm⁻¹. As apparent from Table 2 and in agreement with the calculations for maleimide and N—D maleimide [5] the out-of-plane force field led partly to large discrepancies between the observed and calculated wavenumbers for fundamentals of species a_2 and b_1 . Therefore, the calculated frequencies were of limited help for the assignments of these modes.

Two bands were observed at 677 and 668 cm⁻¹, the former strong in infrared, the latter in Raman. They were assigned as a b_2 and an a_1 fundamental, respectively, whereas a band around 600 cm⁻¹ was interpreted as an overtone, enhanced by Fermi resonance. The weak infrared and Raman bands around 570 cm⁻¹ were assigned as the a_1 mode v_5 , and the PED's of Table 2 indicate that v_6 , v_7 and v_8 all have significant contributions from N—Cl stretch.

In the corresponding N—Cl succinimide [6] the "N—Cl stretching mode" was found at 527 cm⁻¹. A weak infrared band at 537 cm⁻¹ and the depolarized Raman counterpart were taken as ν_{23} .

The bands around 342 cm^{-1} were interpreted as the lowest $a_1 \mod v_9$ and the PED as well as comparison with maleimide [5] and the succinimides [6] reveal the C=O bend to make significant contributions to this fundamental. We have assigned the bands around 158 cm⁻¹ as the lowest b_2 mode involving N—X in plane bending, partly overlapping the b_1 mode around 138 cm⁻¹. The low frequency bands around 79 cm⁻¹, only observed in the crystalline state, were interpreted as a lattice vibration. However, it cannot be completely ruled out that these bands should instead be interpreted as v_{16} or v_{24} .

The close relationship between the spectra of maleimide, N—D and N—Cl maleimide which also includes maleic anhydride is demonstrated in Table 3. Here, we have attempted to describe the fundamentals in terms of localized vibrational modes arranged monotonically for maleimide. The weakness of this procedure is obvious for the N—X (X=H,D,Cl) stretching and bending modes (which are absent for maleic anhydride). However, the similarity between the spectra of these molecules is well demonstrated, supporting our assignments.

NORMAL COORDINATE ANALYSIS

The in-plane force field was constructed by an iteration program [10] described previously [5]. We employed the force field for maleimide and N—D maleimide as a starting point. Two diagonal stretching (Table 4) (K_d and K_1) and two diagonal bending force constants (H_{ψ} and H_{ϕ}) were kept H H fixed since the $\begin{array}{c} | & | \\ -C = C \end{array}$ moiety should be virtually unchanged from maleimide to N—Cl maleimide. Among the seven off-diagonal force constants included,

VIDFAUOUAL	VIDIAUONAI JUNUAMENTAIS TOL IV		11, 11 D, 11 OI IIIATEIIIIUE AIN IIIATEIC AIIIJUITUE	e	
NX maleimide	ide		Maleic anhydride ^a	Assignments	Species
X = H ^b	X = D ^b	X = CI°			
3200	2368	572		N-X stretch	a
3108	3105	3105	3117	C—H in-phase stretch	aı
3108	3115	3111	3117	C—H out-of-phase stretch	b,
1772	1769	1765	1852	C=O in-phase stretch	a,
1710	1690	1705	1782	C=O out-of-phase stretch	, q
1581	1578	1579	1592	C=C stretch	a
1365	837	158		N-X bend	\mathbf{b}_2
1350	1338	1318	1235	C-N ^d -C in-phase stretch	aı
1295	1300	1309	1305	C—H out-of-phase bend	b,
1140	1204	1146	1054	C-N ^d -C out-of-phase stretch	\mathbf{b}_2
1067	1062	1087	1060	C-H in-phase bend	ลเ
972	972	1961	959	C—H out-of-plane bend	a2
937	1085	1027	889	skeletal mode	$\mathbf{b}_{\mathbf{j}}$
006	888	1010	864	CC in-phase stretch	aı
851	850	828	839	C-H out-of-plane bend	, q
776	773	757	768	skeletal mode	a,
721	518	215		N-X out-of-plane bend	b,
680	666	677	697	skeletal mode	\mathbf{b}_2
647	641	668	632	skeletal mode	a,
635	635	660	642	skeletal mode	ā
552	538	537	557	C=O out-of-phase bend	b,
415	414	342	403	C=O in-phase bend	a,
301	300	305	275	C=O out-of-plane bend	ื่อ"
175	175	138	173	C=O out-of-plane bend	b,
^a Frequencies	^a Frequencies taken from ref. 2.				

Vibrational fundamentals for N-H, N-D, N-Cl maleimide and maleic anhydride

TABLE 3

^aFrequencies taken from ref. 2. ^bWhen possible frequencies are taken from the infrared solid state [5]. ^cThis work. ^dFor maleic anhydride C—O—C.

the three stretch—bend interactions $(F_{a\eta}, F_{r\xi} \text{ and } F_{s\alpha})$ were not varied. An additional term $F_{b\beta}(r(N-Cl) - \alpha(CNC))$ was added to the previous [5] force field. The remaining force constants were included in the iteration procedure, and the calculated frequencies are given in Table 2, together with the potential energy distribution (PED). The in-plane force field appears physically reasonable, and the discrepancies between the observed and calculated frequencies could easily be diminished by introducing additional interaction terms (only seven are included).

The out-of-plane force field for maleimide [5] (previously constructed by trial and error) was transferred directly to N-Cl maleimide. Attempts to employ an iteration procedure for these force constants led to unacceptable force constants, indicating that certain interaction terms should have been added to the diagonal terms. As apparent from Table 2, the deviations between the observed and calculated frequencies were quite large for some of the a_2 and b_1 modes (using the force field of Table 4 of ref. 5).

ACKNOWLEDGEMENT

We are indebted to D. H. Christensen for his help in recording the far infrared spectra and to K. Ruzicka for synthetic work. Financial support from NAVF (Norway) is acknowledged.

TABLE 4

Constants		Force type	Constants	
Symbol ^b	Value ^c		Symbol	Value ^c
K	4.942		H*,	0.415
ĸ	10.274		H_{ϕ}^{ψ} *	0.415
K.	5.619		H^{φ}_{α}	1.916
K	8.230		H _c	0.872
K_1^{\star}	5.219		Hằ	1.188
K _h	5.239		H.	0.372
K ^b	1.359	stretch-	$F_{\infty}^{\#}$	0.141
$K_{22}^{a_1a_2}$	1.856	bend	F_{\pm}^{\pm}	0.141
K	0.935		F_{∞}^{15}	-1.276
H_{n}	0.774		$F_{\mathbf{h}\beta}^{\mathbf{sur}}$	-1.800
H''_{ξ}	0.774		ЧО	
		$\begin{tabular}{ c c c c c } \hline \hline Symbol^b & Value^c \\ \hline K_a & 4.942 \\ K_s & 10.274 \\ K_r & 5.619 \\ K_d^* & 8.230 \\ K_d^* & 5.219 \\ K_b & 5.239 \\ K_a & 1.359 \\ K_{a_1a_2} & 1.359 \\ K_{a_s} & 1.856 \\ K_{a_r} & 0.935 \\ \hline \end{tabular}$	$\begin{tabular}{ c c c c c } \hline \hline Symbol^b & Value^c \\ \hline \hline K_a & 4.942 \\ K_s & 10.274 \\ K_r & 5.619 \\ K_d^* & 8.230 \\ K_1^* & 5.219 \\ K_b & 5.239 \\ K_b & 5.239 \\ K_{a_1a_2} & 1.359 & stretch- \\ K_{as} & 1.856 & bend \\ K_{ar} & 0.935 \\ \hline \end{tabular}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$

^aFor out-of-plane bending and torsional force constants see ref. 5, Table 4. ^bFor meaning of symbols see Fig. 4, ref. 5. Asterisks denote force constants kept constant. ^cIn units of mdyn A^{-1} (stretch constants), mdyn rad⁻¹ (stretch—bend interaction constants) and mdyn A rad⁻² (bending constants).

REFERENCES

- 1 H. Baranska, D. H. Christensen, F. Nicolaisen, O. F. Nielsen and P. Klæboe, Acta Chem. Scand., 25 (1971) 2364.
- 2 A. Rogstad, P. Klæboe, H. Baranska, E. Bjarnov, D. H. Christensen, F. Nicolaisen, O. F. Nielsen, B. N. Cyvin and S. J. Cyvin, J. Mol. Struct., 20 (1974) 403.
- 3 A. Rogstad, P. Klæboe, B. N. Cyvin, S. J. Cyvin and D. H. Christensen, Spectrochim. Acta Part A, 28 (1972) 123.
- 4 A. Rogstad, P. Klæboe, B. N. Cyvin, S. J. Cyvin and D. H. Christensen, Spectrochim. Acta, Part A, 28 (1972) 111.
- 5 T. Woldbæk, P. Klæboe and C. J. Nielsen, J. Mol. Struct., 27 (1975) 283.
- 6 T. Woldbæk, P. Klæboe and D. H. Christensen, to be published.
- 7 J. Tscherniac, Ber. Deut. Chem. Ges., B 34 (1901) 4209.
- 8 R. Mason, Acta Crystallogr., 14 (1961) 720; 9(1956) 405.
- 9 R. N. Brown, Acta Crystallogr., 14 (1961) 711.
- 10 G. O. Sørensen, in (Ed. S. J. Cyvin), Moleculer Structures and Vibrations, Elsevier, Amsterdam, 1972.