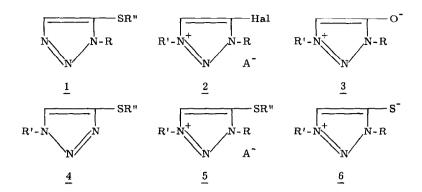
4-(1, 2, 3-TRIAZOLIO)SULFIDES, A NEW MESOIONIC SYSTEM

Mikael Begtrup


Department of Organic Chemistry, Technical University

of Denmark, DK-2800 Lyngby, Denmark

(Received in UK 25 March 1971; accepted for publication 1 April 1971)

The synthesis of 4-(1, 2, 3-triazolio)oxides 3 has been described previously. ^{1a-f} These compounds were prepared by (i) alkylation of 1-substituted 4- or 5-hydroxy-1, 2, 3triazoles, ^{1a-e} (ii) rearrangement of 1-substituted 4- or 5-methoxy-1, 2, 3-triazoles, ^{1b-c} and (iii) displacement of halogen from 1, 3-disubstituted 4-halo-1, 2, 3-triazolium salts 2. ^{1f-g} Recently, a direct ring closure of N-methyl-N-arylazoaminoacetates has been reported, ² additional to these methods. The three first approaches have now been investigated with a view to preparing the 4-(1, 2, 3-triazolio)sulfides 6. It was found that method (i) could not be used since methylation of 1-substituted 4- or 5-mercapto-1, 2, 3-triazoles with methyl iodide gave the S-methyl derivatives 4 or 1 exclusively. ³ Method (ii) was however applicable since 4 or 1, when treated with methyl tosylate, gave 1, 3-disubstituted 4-methylthio-1, 2, 3, -triazolium salts 5 which, on heating with piperidine, dealkylated to 4-(1, 2, 3triazolio)sulfides 6. ³ Method (iii) turned out to be the most convenient. Thus treatment of 1, 3-disubstituted 4-halo-1, 2, 3-triazolium salts 2, with sodium sulfide in dimethyl formamide, gave 4-(1, 2, 3-triazolio)sulfides 6 in good yields (Table 1).

Generally, 4-(1, 2, 3-triazolio) oxides $\underline{3}$ are stable even by prolonged heating to 200° in an inert solvent. In contrast, 4-(1, 2, 3-triazolio) sulfides $\underline{6}$ rearrange when heated in benzene solution to 180° for 3 h. Thus [1-benzyl-3-methyl-4-(1, 2, 3-triazolio)] sulfide $\underline{6}$ $(R=CH_3, R'=CH_2C_6H_5)$ produces a chromatographically separable mixture of 1-methyl-5benzylthio-1, 2, 3-triazole $\underline{1}$ (R=CH₃, R"=CH₂C₆H₅) (82 %, oil), 1-benzyl-4-benzylthio-1, 2, 3triazole $\underline{4}$ (R'=R"=CH₂C₆H₅) (2 %, m. p. 71[°]), and 1-methyl-5-methylthio-1, 2, 3-triazole $\underline{1}$ (R=R"=CH₃) (13 %, oil). The formation of the last two compounds suggests an intermolecular alkyl group transfer reaction. The 4-(1, 2, 3-triazolio) sulfides $\underline{6}$ are readily methylated to give 1, 3-disubstituted 4-methylthio-1, 2, 3-triazolium salts $\underline{5}$ (R"=CH₃). $\overline{3}$

Similarly, <u>6</u> are readily acylated. Thus [1-benzyl-3-methyl-4-(1, 2, 3-triazolio)] sulfide <u>6</u> (R=CH₃, R'=CH₂C₆H₅), when heated with benzoylchloride and pyridine,produces a chromatographically separable mixture of 1-methyl-5-benzoylthio-1, 2, 3-triazole <u>1</u> (R=CH₃, R"=COC₆H₅)(49 %, m. p. 152-153^o) and 1-benzyl-4-benzoylthio-1, 2, 3-triazole <u>4</u> (R'=CH₂C₆H₅, R"=COC₆H₅) (32 %, m. p. 153-154^o). Probably, <u>6</u> and benzoyl chloride first give the 4-benzoylthic compound <u>5</u> (R"=COC₆H₅) which, in its turn, suffers dealkylation under the reaction conditions. A similar course of reactions has been noted in the 4-(1, 2, 3triazolio)oxide series. ^{1d-e}

Table 1:Preparation of 4-(1, 2, 3-triazolio)sulfides 6 from 1, 3-disubstituted4-halo-1, 2, 3-triazolium salts 2

Starting material	Product ⁴	Yield	m.p.
2	6	%	
R=R'=CH ₃ , Hal=Br	R=R'=CH ₃	55	172-173 ⁰
$R=CH_3, R'=CH_2C_6H_5, Hal=Br$	$R = CH_3, R' = CH_2C_6H_5$	43	129 ⁰
$R=CH_2C_6R_5, R'=CH_3, Hal=Br$	$R=CH_2C_6H_5$, $R'=CH_3$	30	$137 - 139^{\circ}$
$R=C_6H_5, R'=CH_3, Hal=Cl$	$R=C_6H_5$, $R'=CH_3$	93	112 ⁰

References

- a) M. Begtrup and C. Pedersen, <u>Acta Chem. Scand.</u> <u>19</u>, 2022 (1965). b) <u>ibid.</u> <u>20</u>, 1555 (1966). c) <u>ibid.</u> <u>21</u>, 633 (1967). d) <u>ibid.</u> <u>21</u>, 1234 (1967). e) <u>ibid.</u> <u>23</u>, 1091 (1969). f)
 M. Begtrup and P. A. Kristensen, <u>ibid.</u> <u>23</u>, 2733 (1969). g) M. Begtrup, <u>ibid.</u> In press.
- K. T. Potts and S. Husain, J. Org. Chem. <u>35</u>, 3451 (1970).
- 3. M. Begtrup, Acta Chem. Scand., In press.
- 4. Combustion analyses of all compounds were within 0.3 % of theory. All compounds gave consistent NMR-spectra.