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Abstract.- A nom2 steroidal glycoside has been isolated from the starfish Protoreaster nodosus. 
The structure includes a 3B,5a,6B,8B,lScr,24S-hexahydroxysteroidal moiety and a sugar moiety 
[2-0-methyl-B-D-xylopyranosyl-(1 + 21-a-L-arabinofuranosyZ]which is glycosidicaZZy attached 
at C-24 of the aglycone. 

Saponins from starfish are steroidal glycosides and since now two structural types have been 

encountered. The first one, recognized for long time, is characterized by steroidal aglycones 

possessing a 3B,6a-diol pattern and a 9,11-double bond; the oligosaccharide moiety is attached at 

C-6 and a sulphate residue is at C-3'. The second structural type, recently discovered in two 

species of the genus Eehinaster, has a number of unusual features: a A7,38,68-dihydroxysteroidal 

moiety, there is no sulphate group and, most remarkably, the carbohydrate chain is cyclized 

between C-3 and C-6 of the aglycone1v3. 

We now report the occurrence in the Pacific starfish Protoreaster nodosus of a steroidal 

glycoside, nodososide (I), which is of a completely new type. This material was obtained in 

0.003% yield (dry weight basis) from the methanol extract of the lyophilized "starfish" collected 

off Noumea, Nouvelle Caledonie, by SiOz short column chromatography (CHC13 and increasing MeOH 

content to 40%) followed by preparative LC (prepak 500 SiOJ, 30% MeOH/CHClj) and eventually 

reversed phase HPLC (ClBp-bondapak, 35% HzO/methanol). 

Nodososide (I), [a], = -21.3", did not crystallize, and has molecular formula C,,H,,O,,, 

determined by combustion analysis and FD mass spectral analysis, which showed a peak at m/e 769 

(M+ + Na). On acid methanolysis it gave methyl arabinoside (g.1.c.) and a second methyl glycoside, 

while the aglycone was degraded to intractable material. Benzoylation with p-bromobenzoyl chloride 

and pyridine of the reaction mixture followed by TLC-SiO, separation in 20% EtzO/hexane gave 

methyl 2-0-methyl-3,4-di-0-(p-bromobenzoyl)-6-D-xylopyranoside, 'H NMR (CDClj, 270 MHz): 6 7.88- 

7.48 (m; 8; aromatic-H's), 5.51 (dd; 1; J = 8.7, 8.7; 3-H), 5.19 (ddd; 1; J = 8.7, 8.7, 4.4; 4-H), 

4.40 (d; 1; J = 6.1; l-H), 4.25 (dd, 1, J = 11.5 and 4.4, 5-H eq), 3.55 (s; 3; OMe), 3.47 (s; 3; 

OMe), 3.45 (br t;lH; J = 11.5; 5-H ax), 3.30 (dd; 1; J = 8.7 and 6.1; H-2), CD: 236/253, Ac + 12/ 

- 38, A = -50,and methyl. 2,3,4-tri-O-(p-bromobenzoyl)-a-l-arabinopyranoside, lH NMR (CDCl;, 277 1Mz): 

t 
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6 7.93 - 7.42 (m; 12; aromatic-H's), 5.66 - 5.59 (m; 2; 2-H, 4-H), 5.52 (dd; 1; J = 7.3, 3.2; 3-H), 

4.62 (d; 1; J = 6.0; I-H), 4.28 (dd; 1; J = 11.5, 3.0; 5-H ax), 3.88 (dd; 1; J = 11.5, 1.5; 5-H 

eq), 3.53 (s; 3; OMe); CD: 236/253, AE - 30/ + 95,A=+ 125. The signs of exciton-split CD curves 

accompanying the two structures established the D-configuration of the xyloside and the L- 

configuration of the arabinoside4. We have assigned every sugar signal in the 500 MHz high- 

resolution lH NMR spectrum (D20) of 1 using spin-decoupling techniques and established the 

configuration of the glycoside linkages and that arabinose is in its furanose form: 2-O-Me-B-D- 

xylopyranosyl residue, 1-H 6 4.537 (d, J = 7.75), 2-H 6 3.036 (dd, J = 7.75, 9.02), 3-H 6 3.472 

(dd, J = 9.02, 9.02), 4-H 6 3.631 (ddd, J = 10.3, 9.02, 5.65), 5S-H 6 3.261 (dd, J = 11.60, 10.3), 

5R-H 6 3.903 (dd, J = 11.60, 5.65), OMe 6 3.605 (s); a-L-arabinofuranosyl residue: 1-H 6 5.146 (s), 

2-H 6 4.153 (d, J = 3.80), 3-H 6 4.129 (dd, J = 7.20, 3.80), 4-H 6 4.034 (ddd, J = 7.20, 4.60, 3.52), 

5-Hz 6 3.761 (dd, J = 12.50, 4.60) - 3.835 (dd, J = 12.50, 3.52). Treatment with acetic anhydride 

and pyridine at room temperature produced an hexaacetate(2, 6 CH3 -C = 0 at 6 2.010, 2.026, 2.030, 

2.083, 2.090 and 2.10) showing in the 'H NMR spectrum the 2-0-Me-xyl H-2 and the arab H-2 signals 

essentially unshifted, 6 3.132 (dd, J = 8.75 and 7.40 Hz) and 4.180 (d, J = 3.70 Hz). These data 

established both the sequence and the interglycosidic linkage of the disaccharide moiety as shown 

in 1 . Analysis of the 13C NMR spectrum provided corroborative evidence; 2-0-Me-B-D-xylopyranosyl 

residue: 105.2 (C-l), 84.1 (C-2), 77.8 (C-3), 71.0 (C-4), 67.1 (C-5) and 60.7 (OMe); a-L- 

arabinofuranosyl residue: 107.6 (C-l), 93.1 (C-2), 77.6 (C-3), 85.0 (C-4), 62.4 (C-5). Assignments 

have been made by comparing the spectrum of 1 with those of methyl B-D-xylopyranoside' and methyl- 

6 a-L-arabinofuranoside . 

The glycosyl residue accounts for CllH190s out of C38%6014 molecular formula, leaving C27q706 

for the aglycone moiety. 13C NMR showed absence of carbon-carbon double bonds. A saturated sterol 

with six hydroxyl groups (four secondary and two tertiary; off-resonance 13C NMR) was thus a 

plausible candidate for a structure assignment. In agreement with a cholestane structure the 'H 

NMR showed methyl doublets at 6 0.907 (6H; J = 6.50; 26 and 27-H) and 0.930 (3H; J = 6.75; 21-H) 

and two methyl singlets at 6 0.977 (18-H) and 1.325 (19-H). A multiplet centered around 4.11 ppm 

had the complexity normally seen for 36-hydroxyl group, and its downfield position,ca.0.5 ppm 
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shifted relative to 5a-cholestan-3B-ol, along with the dd (J = 3.1, 2.5) at 3.678 ppm, characteri- 

stic of an equatorial proton coupled with two other protons, led to postulate a 36,5cc,6B_trihydroxy 

moiety, which is a common element in marine polyhydroxysterols7. Significant shifts were noted for 

both the angular methyl resonances of 1 when the spectrum was measured in pyridine (6 1.849 and 

1.310; cf. 1.325 and 0.977 in DzO), indicating that both the angular methyl groups were subjected 

to 1,3-diaxial interaction with hydroxyl groups. This suggested location of the second tertiary 

hydroxyl at C-8, which is a common feature in polyhydroxysterols isolated from the same starfishB. 

The carbon chemical shifts for 5a-cholestane-38,5,6B-trio1 have been publishedg. Taking this as 

starting structure the 13C NMR shifts for carbons in rings A and B as well as for carbons 11,12 

in 1 (Table) well corresponded to those expected upon introduction of an axial hydroxyl at 

C-810'11. C-7 and C-9 (B-carbons) are downfield shifted ppm 6.0 and 2.7, respectively, C-11 

(y-carbon) is upfield shifted ppm 2.6, while C-19 (&-carbons) which is subjected to the 1,3-diaxial 

OH-CH3 interaction", is downfield shifted ppm 0.9. The chemical shift of carbon-6 (y-carbon), 

downfield relative to the model compound, is consistent with the large deviation (7-10 ppm down- 

field) from additivity at the hydroxyl-bearing carbons found in 1,3-syn-diaxial dihydroxysteroids". 

The third secondary hydroxyl group was located at C-15a on the basis of the characteristics (ddd; 

J = 12.7, 9.8, 3.0) of the hydroxymethine signal in the lH NMR at 6 4.324 and confirmed by the 

13C NMR frequencies assigned to C-14, C-15, C-16 and C-17 (Table), when compared with those of the 

corresponding carbons of 5a-cholestan-15a-o110. 

TABLE - 13C NMR shifts of the aglycone carbons in 1 and 2 (TMS = 0) 

Compound 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

l(py-dg) 34.3 31.8 67.3 42.4 75.7 77.9 41.8 76.7 48.7 39.1 19.4 42.4 44.8 66.3 

2(CDC13) 33.1 29.9 71.3 36.9 15.1 18.0 41.1 16.0 47.3 38.2 18.2 39.0 44.0 61.9 

15 16 17 18 19 20 21 22 23 24 25 26 27 

l(py-d5) 69.2 40.9 55.0 15.6 18.2 35.4 18.9 31.9 27.8 83.5 30.6 18.2 18.2 

Z(CDC1,) 72.4 37.9 54.9 14.9 17.9 35.0 17.7 31.5 27.4 83.0 30.1 17.4 18.3 

The remaining secondary hydroxyl group (bm at 6 3.350) should be placed in the side chain, 

possibly at C-24, and should be the site of glycosidation. The carbon chemical shifts for 24R- 

and 24S-hydsoxycholesterols have been recently publishedl>. Using one of these (the chemical 

shifts of the side chain carbons in the two C-24 epimers were only slightly different) as model 

compound and the glycosidation shifts reported by Tori et ~2.'~ for see-alcohols the chemical 

shifts of the side chain carbons of 1 well corresponded to those expected. Calculations with 

the hydroxyl group in 2214 or 2315 positions gave values that were far off from experimental 

results. 

The proposed formulation 5a-cholestane-3B,5,6B,8,15a,24-hexol 24-O-glycosidated for the new 

compound received additional confirmation by the following data. 

a.- The hexaacetate 2 showed two aglycone protons a to acetoxy groups, 3n-H 6 5.20 and 15B-H 

6 5.14, in the ~NMR. 

b.- Oxidation with pyridinium dichromate in CH,Cl, of 2 produced a monoketone 3, whose 'H 

NMR was devoid of the 6cr-H signal and showed the 19-H signal at upfield position, 6 1.00, relative 
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to 2, 6 1.337, thus giving evidence for the removal of a 1,3-diaxial methyl-hydroxyl interaction 

in the conversion 2 + 3, consistent with a 68-OH assignment in 2 (and I). 

c.- The hexaacetate 2 formed a phenylboronate; since the ketone 3 did not react with 

phenylboronic anhydride, the formation of the boronate ester, which involves the 68-OH, requires 

one tert-hydroxyl be situated at the 88-position. 
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