N. V. Zyk, E. A. Mendeleeva, S. I. Kolbasenko,

A. G. Kutateladze, and N. S. Zefirov

UDC 542.91:547.495.1'131: 546.226-312:547.592.2

We have shown that SO_3 inserts at the N-Cl bond of N-chloroalkylamines with the formation of O-chloro-N,N-dialkylsulfamates (R_2NSO_2OCl) [1], which, in turn, readily undergo electrophilic addition with olefins to give rearranged and nonrearranged chlorohydrin N,N-dialkylsulfamates [2, 3].

A new step in the use of the insertion of SO_3 at the N-Cl bond is the extension of this method to N-chlorourethanes. We have found that the treatment of N-chlorourethane (I) with an equivalent amount of SO_3 in CH_2Cl_2 at $-50\,^{\circ}C$ and then with cyclohexene at $-30\,^{\circ}C$ with gradual warming to $20\,^{\circ}C$ gives N-carboethoxy-O-(trans-2-chlorocyclohexyl)sulfamate (II) in 65% yield according to the following scheme

$$c_2H_50-c(0)NHCL+so_3$$
 $[c_2H_5Oc(0)NHso_2OcL]$ (I)

 $Y = OSO_2NHC(O)OC_2H_5$

Sulfamate (II) may be additionally purified by recrystallization from hexane, mp 78-79°C. PMR spectrum in CDCl₃ at 200 MHz (δ , ppm): 8.43 s (1H, NH), 4.75 d. t (1H, HCO, $J_1=J_2=9$, $J_3=4.5$ Hz), 4.20 q (2H, OCH₂), 3.8 d. t (1H, HCCl, $J_1=J_2=9$, $J_3=4.5$ Hz), 1.6-2.5 m (8H), 1.36 t (3H, CH₃, J=7 Hz). Analogous adducts were obtained from 1-hexene and cyclopentene. The structures of these products were demonstrated by ¹H NMR and IR spectroscopy and elemental analysis for C, H, and N. The scope for the use of this new reaction and its synthetic possibilities are under study.

LITERATURE CITED

- N. S. Zefirov, N. V. Zyk, A. S. Koz'min, et al., Dokl. Akad. Nauk SSSR, <u>297</u>, No. 4, 863 (1987).
- 2. N. S. Zefirov, N. V. Zyk, S. I. Kolbasenko, and A. G. Kutateladze, Izv. Akad. Nauk SSSR, Ser. Khim., No. 4, 959 (1984).
- 3. N. S. Zefirov, N. V. Zyk, S. I. Kolbasenko, and A. G. Kutateladze, J. Org. Chem., $\underline{50}$, No. 23, 4539 (1985).

M. V. Lomonosov Moscow State University. Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 12, pp. 2871-2872, December, 1989. Original article submitted July 14, 1989.