
A NEW STEREOSELECTIVE SYNTHESIS OF VINYLSILANES UTILIZING VINYL SULFONES

Masahito OCHIAI, Tatsuzo UKITA, and Eiichi FUJITA* Institute for Chemical Research, Kyoto University, Uji, Kyoto 611

Vinylsilanes 3 were prepared stereoselectively from vinyl sulfones viathe formation of β -tributylstannyl sulfones 2. The stereochemistry of 3 was controlled by the choice of the method for the destannylsulfonation of 2.

The reaction of vinylsilanes with a wide variety of electrophiles has been shown to be highly stereoselective and applicable.¹⁾ Hence it became very important to develop a method for the stereoselective synthesis of vinylsilanes. Actually some methods have been reported: hydrosily-lation of alkynes,²⁾ hydrometallation of alkynylsilanes followed by the proto- or carbo-demetal-lation,³⁾ and silyl-Wittig-Peterson reaction.⁴⁾ In this paper we wish to report a new stereo-selective method for the synthesis of *E*- and *Z*-vinylsilanes 3 utilizing vinyl sulfones 1. The whole reaction sequence is shown in Scheme 1, in which the stereochemistry of the product 3 was affected by the method for the destannylsulfonation of α -silyl- β -stannyl sulfone 2 prepared from 1.

Michael addition of tributylstannyllithium to E-vinyl phenyl sulfone la $(R=C_8H_{17})$ in tetrahydrofuran at -78°C for 20 min under nitrogen followed by the treatment with trimethylsilyl chloride at -78°C for 1h and at room temperature for 12h afforded the α -sily1- β -stanny1 sulfone 2a $(R=C_{g}H_{17})$ smoothly. The destannylsulfonation⁵⁾ of 2a was carried out by the following three different ways. When the sulfone 2a was treated with silica gel (Merck silica gel 60, 70-230 mesh) in chloroform at room temperature (Method A), z-vinylsilane 3a (R=C₈H₁₇) was obtained stereoselectively in 83% yield (isomeric purity; > 98%) on the basis of the vinyl sulfone precursor la. On the other hand E-3a was produced in 74% yield by the reaction with finely powdered silica gel (Merck silica gel 60, 230-400 mesh) in chloroform at reflux (Method B). In this reaction, isomerization of the initially formed Z-3a to the thermodynamically more stable E-3a was observed. The active reagent for the isomerization of Z-3a was found to be benzenesulfinic acid 6) which was produced in the silica gel catalyzed destannylsulfonation of 2a. Thus Z-3a was isomerized to E-isomer in 95% yield (isomeric purity; 97%), by the reaction with benzenesulfinic acid and silica gel in refluxing chloroform. Thermal destannylsulfonation of 2a in benzene-d₆ at 85 °C in a sealed tube (Method C) for 30 h afforded the *E*-3a as a major product. The results are summarized in Table 1.

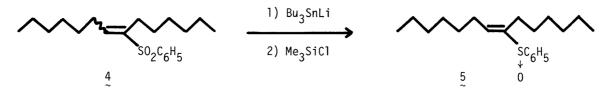

				~				
Run	Vinyl sulfone $\frac{1}{2}$			Destannylsulfonation		Product		
				Method	Time/h	3~	E : Z	Yield/% ^{a)}
1	R=C8H17	la ~~	(<i>E</i>)	А	7.5	3a ~~	< 2 : > 98	83
2	la ~~		(<i>E</i>)	В	27	3a ~~	> 98 : < 2	74
3	la ~~		(<i>E</i>)	С	30	3a	88 : 12	(100) ^{b)}
4	la ~~		(Z)	А	16	3a ~~	< 2 : > 98	60
5	la ~~		(Z)	В	49	3a ~~	> 98 : < 2	69
6	la ~~		(Z)	С	30	3a ~~	88 : 12	(97) ^{b)}
7	R=C10H21	1b ~~	(4 : 1) ^{c)}	А	17	3b	4 : 96	85
8	1b ∼∼		(4 : 1) ^{c)}	В	21	3b	98 : 2	78
9	1b ~~		(4 : 1) ^{c)}	c ^{d)}	21	3b	95 : 5	(64)
10	R=C ₆ H ₅ (CH ₂) ₂	1c	(6 : 1) ^{c)}	А	7	3c	3 : 97	(55)
11	lc 		(6 : 1) ^{c)}	В	52	3c	97 : 3	(56)
12	lc ~~		(6 : 1) ^{c)}	c ^{d)}	19	3c	96 : 4	(47)

Table 1. Stereoselective Synthesis of E- and Z-Vinylsilanes 3

a) Isolated yield based on 1 (GLC yield). b) Yield based on 2a. The compound 2a was isolated by flash column chromatography in 39 and 43% yields from E- and \mathbb{Z} la, respectively. c) E : Z Ratio. d) Destannylsulfonation was carried out in refluxing toluene.

The stereochemistry of vinylsilanes 3 was shown to be not affected by that of vinyl sulfones 1 used. Thus sulfone 2a prepared from Z-la in a similar manner gave rise to Z- or E-3a stereo-selectively by its destannylsulfonation using Method A or B and C, respectively (Runs 4-6). A mixture of stereoisomers of vinyl sulfones 1b (R=C₁₀H₂₁) and 1c [R=C₆H₅(CH₂)₂] afforded the corresponding vinylsilanes 3 in a highly stereoselective manner (Runs 7-12).

 α,β -Disubstituted vinyl sulfone 4 on treatment with tributylstannyllithium and then with trimethylsilyl chloride resulted in the formation of reduction product unexpectedly. *E*- and *Z*-Vinyl sulfones 4 produced the *E*-vinyl sulfoxide 5 in 38 and 44% yields, respectively.

References

W. P. Weber, "Silicon Reagents for Organic Synthesis," Springer-Verlag, Berlin (1983), p. 79.
R. A. Benkeser, M. L. Burrous, L. E. Nelson, and J. V. Swisher, J. Am. Chem. Soc., <u>83</u>, 4385 (1961); K. Tamao, N. Miyake, Y. Kiso, and M. Kumada, *ibid.*, <u>97</u>, 5603 (1975); H. Matsumoto, S. Nagashima, T. Kato, and Y. Nagai, Angew. Chem., Int. Ed. Eng., <u>17</u>, 279 (1978). 3) J. J. Eisch and M. W. Foxton, J. Org. Chem., <u>36</u>, 3520 (1971); K. Uchida, K. Utimoto, and H. Nozaki, *ibid.*, <u>41</u>, 2215 (1976). 4) B.-T. Gröbel and D. Seebach, Chem. Ber., <u>110</u>, 852 (1977).
M. Ochiai, S. Tada, K. Sumi, and E. Fujita, Tetrahedron Lett., <u>23</u>, 2205 (1982); M. Ochiai, T. Ukita, and E. Fujita, J. Chem. Soc., Chem. Commun., <u>1983</u>, 619. 6) Protodesilylation of vinyl-silanes using p-toluenesulfinic acid has been reported; G. Büchi and H. Wüest, Tetrahedron Lett., 1977, 4305.

(Received July 13, 1983)