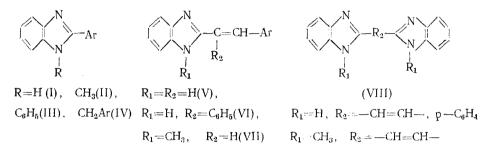
## LUMINESCENCE AND SCINTILLATION PROPERTIES OF SOME 1, 2-DISUBSTITUTION PRODUCTS OF BENZIMIDAZOLE


## V. V. Tkachev and L. N. Pushkina

Zhurnal prikladnoi spektroskopii, Vol. 2, No. 1, pp. 63-68, 1965

The absorption and photoluminescence spectra of 71 derivatives of benzimidazole have been studied. The relation between the chemical structure and the light yield in solution is discussed. The scintillation efficiency of the compounds in toluene solution has been measured. Several easily soluble derivatives of 2-arylbenzimidazole have the same scintillation efficiency as p-terphenyl (5 g/l).

This paper constitutes the extension of earlier work on spectral and scintillation properties in the benzazole series. Earlier [1-4] we studied these for the benz- and naphthoxazoles.

Here we present results on the luminescence, absorption spectra, and the scintillation properties in solution for some benzimidazoles. The aryl derivatives have not previously been studied as scintillators, although they possess (in analogy with the benzoxazoles) a conjugated system that extends to the pair of p-electrons on the nitrogen heteroatom. The H in the NH-group may be replaced by various radicals to produce more derivatives than in the benzoxazole series. In [5] we described the synthesis of the arylbenzimidazoles (I)-(VIII)\*; the substituents in position 2 are the same as in the benzoxazole series [1, 3]:



Measurements were made of the absorption and photoluminescence spectra in benzene solution, the quantum yield  $B_q^f$  relative to 2, 5-diphenyloxazole, the mean wavelength of the luminescence  $\lambda_m$ , and the scintillation efficiency s relative to p-terphenyl in toluene (5 g/l). The apparatus used and the measuring conditions have been described [2, 3]. The luminescence and scintillation properties of disubstituted benzoxazoles and benzimidazoles have been compared in [2], showing that the main effect on the absorption and luminescence spectra in the 1, 2-disubstituted benzimidazoles comes from the substituents in the 2-position, and that the substituent on N<sup>1</sup> in the imidazole ring has mainly an induction effect, or (for bulky substituents) a spatial interaction as well. Table 1 indicates the effects of various substituents in position 2 on the optical and scintillation properties of compounds (I)-(IV); these agree with the conclusions of [2, 3].

Measurement of s for the 2-arylbenzimidazoles showed that a series of very soluble compounds with  $CH_3$ ,  $C_6H_5$ , or  $CH_2Ar$  in position 1 had the same scintillation properties as p-terphenyl. Of these, the easily accessible compounds (IV) deserve attention.

To the unsymmetrical benzimidazolylarylethylenes (V)-(VII) we may apply all that has been said of similar benzoxazoles [1, 3]. The absorption maxima of (V) and (VII) agree fairly well in position and  $\varepsilon$  (Tables 2 and 3). The optical characteristics of (VI) also suggest that the phenyl radical ( $R_2 = C_6H_5$ ) is somewhat displaced from the plane of the molecule.

Compounds (V) and (VII) differ from the benzoxazolylarylethylenes in showing considerable luminescence; they show a considerably larger Stokes displacement than the 2-arylbenzimidazoles, especially the N-methyl derivatives of (VII). The  $B_q^f$  depend markedly on the substituent in the phenyl ring, as in the benzoxazolylarylethylenes [3].  $B_q^f$  falls from 0. 60 to 0. 02, and the groups may be placed in the order:  $p-C_6H_4-C_6H_5$ ,  $1-C_{10}H_7$ ,  $p-C_6H_4Cl$ ,  $p-C_6H_4Br$ ,  $C_6H_5$ ,  $p-C_6H_4F$ ,  $p-C_6H_4CH_3$ ,  $p-C_6H_4OCH_3$ ,  $3,4-C_6H_3(OCH_2O)$ ,  $3,4-C_6H_3(OCH_3)_2$  (Table 3). Photoluminescence is absent in the dialkylaminophenyl derivative (V).

The fall in  $B_q^{\dagger}$  of the ethylenes as compared with those when the aryl is directly connected to the heterocyclic ring must be due to an increased degree of free rotation around the additional single C-C bond, which is especially marked for systems such as solutions in benzene at ordinary temperatures. But the effects of the groups on  $B_q^{\dagger}$  and s (Tables 2 and

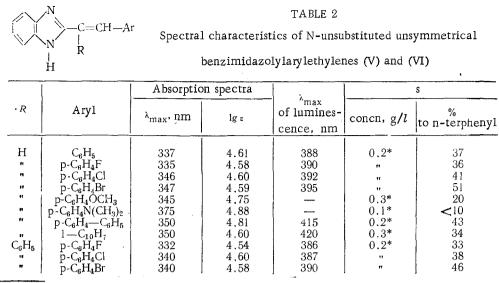
<sup>\*</sup> Compounds not given in [5] and made for the first time are briefly characterized in Table 1.



## Optical and scintillation characteristics of 1, 2-substituted

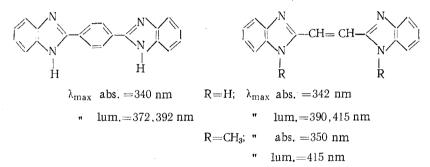
| R <sub>1</sub>                                                      | benzimidazoles (I)-(IV)                             |                              |                                                           |                   |              |           |              |                                              |                                                           |             |  |
|---------------------------------------------------------------------|-----------------------------------------------------|------------------------------|-----------------------------------------------------------|-------------------|--------------|-----------|--------------|----------------------------------------------|-----------------------------------------------------------|-------------|--|
| · · · · · · · · · · · · · · · · · · ·                               |                                                     |                              |                                                           | Photoluminescence |              |           |              |                                              | S                                                         |             |  |
|                                                                     |                                                     | Maximum<br>absorption,<br>nm |                                                           |                   |              | ectra     |              |                                              |                                                           |             |  |
| $R_2$                                                               | $R_1$                                               | E D E                        |                                                           | ,                 | ,            |           |              | r                                            | -i                                                        | % of 5 g/l  |  |
|                                                                     |                                                     | IXI<br>SOI                   | ω                                                         | $nm^{\lambda_1}$  | λ₂,<br>nm    | λ₃,<br>nm | ^m'<br>nm    | $B_{\mathbf{q}}^{f}$                         | g/1                                                       | p-terphenyl |  |
|                                                                     |                                                     | Ab                           | 20                                                        |                   |              |           | 11111        | ્ય                                           | concn<br>g/l                                              | in toluene  |  |
|                                                                     | <u>י</u><br>ו                                       |                              | <u>.</u>                                                  | 1<br>  1c         | ee th        | 211 21    | 20 חד        | n                                            |                                                           |             |  |
| Н                                                                   | Н                                                   | 245**                        | 3.76                                                      | less than 330 nm  |              |           |              | 2.5*                                         | 17                                                        |             |  |
| 17                                                                  | $C_6H_5$                                            | 250**                        | 4.29                                                      | (outside range of |              |           |              | 5                                            | 39                                                        |             |  |
| Ħ                                                                   | p-C <sub>6</sub> H <sub>4</sub> OCH <sub>3</sub>    | 247**                        | 4.37                                                      | instrument)       |              |           |              | 5                                            | 41                                                        |             |  |
| C <sub>6</sub> H <sub>5</sub>                                       | H                                                   | 302                          | 4.40                                                      | 345               | 360          |           | 365          |                                              | 0.45*                                                     | 68          |  |
| 11                                                                  | CH <sub>3</sub>                                     | 295                          | 4.28                                                      | 347               | 358          | -         | 364          | 0.84                                         | 5                                                         | 95          |  |
| **                                                                  | $CH_2C_6H_5$                                        | 293                          | 4,35                                                      | 348               | 360          |           | 367          | 0.78                                         | 5                                                         | 94          |  |
| n<br>                                                               | C <sub>5</sub> H <sub>5</sub>                       | 295                          | 14.36                                                     |                   | 360          |           | 365          |                                              | 5                                                         | 87          |  |
| p-C <sub>6</sub> H <sub>4</sub> F                                   | H H                                                 | 304<br>295                   | $  \frac{4.18}{4.35}  $                                   | 343<br>245        | 357<br>  360 |           | 366<br>  367 | $0.76 \\ 0.78$                               | $   \begin{array}{c}     0.5^{*} \\     4   \end{array} $ | 69<br>83    |  |
| "                                                                   | CH <sub>3</sub><br>—CH <sub>2</sub> -p-C₀H₄F        | 295                          | 4.64                                                      | 348               | 361          |           | 369          |                                              | 5                                                         | 87          |  |
| "                                                                   | $C_6H_5$                                            | 295                          | 4,65                                                      |                   | 360          | _         | 365          |                                              | 5                                                         | 82          |  |
| p-C <sub>6</sub> H <sub>4</sub> Cl                                  | H                                                   | 310                          | 4,26                                                      | 350               | 360          |           | 373          | 0,85                                         | 0.5*                                                      | 69          |  |
| P 061 401                                                           | CH <sub>3</sub>                                     | 298                          | 4.55                                                      |                   | 357          |           | 372          | 0.87                                         | 5                                                         | 90          |  |
| **                                                                  | CH <sub>2</sub> -p-C <sub>6</sub> H <sub>4</sub> Cl | 297                          | 4,46                                                      | 352               | 368          | _         | 370          | 0.80                                         | 5                                                         | 86          |  |
| . н                                                                 | Ĉ <sub>6</sub> H <sub>5</sub>                       | 300                          | 4,35                                                      |                   | 362          |           | 376          | 0,79                                         | 5                                                         | 87          |  |
| C <sub>6</sub> H <sub>4</sub> Br                                    | H                                                   | 310                          | 4.40                                                      | 352               | 370          | 1         | 372          | 0.25                                         | 0.3*                                                      | 25          |  |
| Ħ                                                                   | CH <sub>3</sub>                                     | 302                          | 4.31                                                      | 348               | 365          |           | 373          | 0.29                                         | 5                                                         | 33          |  |
| **                                                                  | CH <sub>2</sub> -p-C <sub>6</sub> H <sub>4</sub> Br | 299                          | 4.54                                                      | 353               | 370          | -         | 372          | 0.22                                         | 5                                                         | 29          |  |
| tr                                                                  | C <sub>6</sub> H <sub>5</sub>                       | 300                          | 4.33                                                      | 347               | 366          | <u> </u>  | 375          | 0.24                                         | ö                                                         | 34          |  |
| p-C <sub>6</sub> H <sub>4</sub> CH <sub>3</sub>                     | H H                                                 | 306                          | 4,52                                                      | 352               | 360          |           | 370          | 0.73                                         | 0.4*                                                      | 57          |  |
| 17                                                                  | CH₃<br>CH₂-p-C₀H₄CH₃                                | 296<br>295                   | $   \begin{array}{c}     4.39 \\     4.36   \end{array} $ | 352<br>348        | 360<br>363   |           | 370<br>369   | $\begin{bmatrix} 0.73 \\ 0.75 \end{bmatrix}$ | 5<br>5                                                    | 97<br>94    |  |
| 11<br>11                                                            | $C_{6}H_{5}$                                        | 302                          | 4.30                                                      | 348               | 360          |           | 367          | 0.65                                         | 5                                                         | 90          |  |
| p-C <sub>6</sub> H <sub>4</sub> OCH <sub>3</sub>                    | H                                                   | 310                          | 4.46                                                      | 350               | 364          | <u> </u>  | 370          | 0.74                                         | 0.4*                                                      | 70          |  |
| P 061400113                                                         | CH <sub>3</sub>                                     | 296                          | 4.47                                                      | 350               | 368          | -         | 370          | 0.68                                         | 5                                                         | 91          |  |
| **                                                                  | CH₂-p-C <sub>6</sub> H₄OCH₃                         | 296                          | 4.45                                                      | 350               | 367          | _         | 372          | 0.77                                         | 5                                                         | 94          |  |
| 17                                                                  | $C_6H_5$                                            | 300                          | 4.22                                                      | 352               | 360          | (         | 370          | 0.82                                         | 5                                                         | 98          |  |
| 3, 4-C <sub>6</sub> H <sub>3</sub> (OCH <sub>3</sub> ) <sub>2</sub> | H                                                   | 315                          | 4.70                                                      | 350               | 364          |           | 372          | 0.93                                         | 0,4*                                                      | 68          |  |
| **                                                                  | CH <sub>3</sub>                                     | 303                          | 4.28                                                      | 337               | 353          |           | 373          | 0.85                                         | 5                                                         | 94          |  |
| H                                                                   | CH2-3,4-C6H3(OCH3)2                                 | 302                          | 4.52                                                      |                   | 355          |           | 373          | 1.02                                         | 5                                                         | 95          |  |
| "                                                                   | C <sub>6</sub> H <sub>5</sub>                       | 305                          | 4,15                                                      |                   | 360          |           | 378          | <u>.</u>                                     | 5                                                         | 95          |  |
| 3,4-C <sub>6</sub> H <sub>3</sub> (OCH <sub>2</sub> O)              | H                                                   | 313                          | 4.48                                                      | —                 | 357          |           | 372          | 0.94                                         | 15                                                        | 93          |  |
|                                                                     | CH <sub>3</sub>                                     | 305                          | 4.40                                                      |                   | 357          |           | 373          | 0.95                                         | 5                                                         | 95          |  |
| p-C <sub>6</sub> H <sub>4</sub> N(CH <sub>3</sub> ) <sub>2</sub>    | H<br>CH <sub>3</sub> ***                            | 330                          | 4.66                                                      | 365               | 380          |           | 396          | 1.20                                         | 0.20*                                                     | 57          |  |
| **                                                                  | $C_6H_5$                                            | $\frac{317}{325}$            | $\begin{array}{c}4.59\\4.60\end{array}$                   | 363               | 382<br>390   |           | 390<br>402   | $1.13 \\ 1.00$                               | $\frac{5}{4}$                                             | 108         |  |
| $p-C_6H_4N(C_2H_5)_2$                                               | H                                                   | 337                          | 4.69                                                      | 368               | 380          | 1         | 397          | 1.00                                         | $ 0,20^* $                                                | 53          |  |
| p-C611414(C2115)2                                                   | CH3****                                             | 317                          | 4.58                                                      | 364               | 383          |           | 396          |                                              | 4                                                         | 107         |  |
| 11                                                                  | Č <sub>6</sub> H <sub>5</sub>                       | 327                          | 4.57                                                      |                   | 392          |           | 405          |                                              | 1                                                         | 95          |  |
| p-C <sub>6</sub> H <sub>4</sub> C <sub>6</sub> H <sub>5</sub>       | H                                                   | 315                          | 4.72                                                      | 362               | 375          | 390       | 393          | 0.99                                         | 0.45*                                                     | 68          |  |
| N                                                                   | CH <sub>3</sub>                                     | 306                          | 4.48                                                      | 362               | 375          | 392       | 393          | 0.99                                         | 5                                                         | 107         |  |
| 11                                                                  | $CH_2 \cdot p \cdot C_6H_4 - C_6H_5$                | 305                          | 5.55                                                      | 362               | 375          | 395       | 391          | 0.98                                         | 5                                                         | 100         |  |
|                                                                     | C <sub>6</sub> H <sub>5</sub>                       | 307                          | [4, 57]                                                   | 362               | 375          | 392       |              |                                              |                                                           | 90          |  |
| 1-C10H7                                                             | H                                                   | 318                          | 4.35                                                      | 362               | 382          | 405       | 400          | 0,70                                         | 0,7*                                                      | 64          |  |
| **                                                                  | CH 1 C H                                            | 297                          | 4.22                                                      | 0.00              | 382          |           | 407          | 0.50                                         | 5                                                         | 93          |  |
| 11                                                                  | $CH_2-1-C_{10}H_7$                                  | 285                          | 4.38                                                      | 363               | 375          | 398       | 398          | 0.73                                         | 5                                                         | 91          |  |
|                                                                     | C <sub>6</sub> H <sub>5</sub>                       | 285                          | 4.32                                                      | 365               | 380          | L         | 385          | 0.25                                         | 5                                                         | 47          |  |

benzimidazoles (I)-(IV)


\* Concentration of saturated solution in toluene.

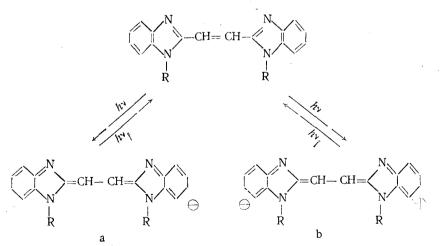
🏁 In n-heptane.

Obtained from N-methyl-o-phenylenediamine and p-dimethylaminobenzaldehyde
[5], m. p. 154-156<sup>o</sup> (from mixture of n-heptane with benzene). Found %: C 76.33;
H 6. 70; N 16.65. C<sub>16</sub>H<sub>17</sub>N<sub>3</sub>. Calculated %: C 76.49; H 6.77; N 16.73.

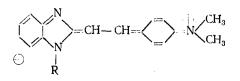

Obtained by methylation of the silver salt of 2-(p-diethylaminophenyl)benzimidazole, as in [5]; m. p. 116-118° (from mixture of n-heptane with benzene). Found % C 77.49; H 7.34; N 15.31. C<sub>18</sub>H<sub>21</sub> N<sub>3</sub>. Calculated %: C 77.42; H 7.52; N 15.06.

3) resemble those for the benzoxazolylarylethylenes [3] in being the opposite of those found for the 2-arylbenzimidazoles (Table 1) and 2-arylbenzoxazoles [3]. Methoxy, dimethoxy, and dialkylaminophenyl groups in the latter increase the photoluminescence and scintillation yield (relative to the phenyl derivative), but here they reduce these quantities considerably. On the other hand, bromine quenches the luminescence heavily in the benzoxazoles [3] and in benzimida-zoles (I)-(IV) but here gives an emission considerably greater than that from the phenyl derivative.




\* Slightly soluble in toluene. Approximate concentration of saturated solution given.

The symmetrical bis-benzimidazoles (VIII) are separated by p-phenyl and ethylene groups, and have strong fluorescence, as in the benzoxazole series:




Their failing is poor solubility. The most soluble 1, 2-di[2'(1'-methyl)benzimidazolyl]ethylene (s = 76% for 0.5 g/l relative to 5 g/l p-terphenyl) may be of interest as a second solute.

Symmetrical structure is advantageous, as in the ethylene of benzimidazole and benzoxazole [3], perhaps because the electron distribution tends towards the equivalent a and b structures on excitation:



The unsymmetrical 2-styrylbenzimidazole has the phenyl ring as an electron acceptor relative to the benzimidazole system [6], which reduces the basicity of the nitrogen ring and so produces a more uniform electron-density distribution over the molecule. The acceptor properties of the halogens have an analogous effect; the 2-benzimidazoly-(p-halo-phenyl)-ethylenes (even the bromine derivatives) show higher light yield than does 2-styrylbenzimidazole. The me-thoxy and dialkylamino groups act with the phenyl ring as electron donors with respect to the benzimidazole system, which results in a very nonuniform electron distribution even in the ground state, in which the  $\delta^+$  charge is on the me-thoxy or dialkylamino group and  $\delta^-$  on the benzimidazole ring. The molecular structure in the excited state will most probably approach the limiting one:



This impediment to free electron migration along the molecule on excitation may be a cause of the internal quenching in this kind of compound.

|                                                                                                                                                                                                                                                                          | TABLE 3                                                                                          |                                                                                                             |                                                                    |                                                                                            |                                                       |                                                      |                                                                                                             |                                                          |                                                          |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|--|--|
| CH=CH-Ar                                                                                                                                                                                                                                                                 | Spectral characteristics of 1-[2'-(1'-methyl)benzimidazolyl]                                     |                                                                                                             |                                                                    |                                                                                            |                                                       |                                                      |                                                                                                             |                                                          |                                                          |  |  |
| CH <sub>3</sub>                                                                                                                                                                                                                                                          | -2-arylethylenes (VII)                                                                           |                                                                                                             |                                                                    |                                                                                            |                                                       |                                                      |                                                                                                             |                                                          |                                                          |  |  |
| · -                                                                                                                                                                                                                                                                      | Absorption<br>spectra                                                                            |                                                                                                             | Pho                                                                | oto lum                                                                                    | s                                                     |                                                      |                                                                                                             |                                                          |                                                          |  |  |
| Ary1                                                                                                                                                                                                                                                                     | λ <sub>max</sub> ,<br>nm                                                                         | lg ∈                                                                                                        | λ <sub>1</sub> ,nm                                                 | λ₂,nm                                                                                      | λ3.nm                                                 | λm,<br>nm                                            | вf                                                                                                          | concn.<br>g/l                                            | to n-ter-                                                |  |  |
| $\begin{array}{c} C_{\rm g}H_5 \\ p\-C_{\rm g}H_4F \\ p\-C_{\rm g}H_4C1 \\ p\-C_{\rm g}H_4Br \\ p\-C_{\rm g}H_4CH_3 \\ p\-C_{\rm g}H_4OCH_3 \\ 3,4\-C_{\rm g}H_3(OCH_3)_2 \\ 3,4\-C_{\rm g}H_3(OCH_2O) \\ p\-C_{\rm g}H_4\-C_{\rm g}H_5 \\ 1\-C_{\rm 10}H_7 \end{array}$ | $\begin{array}{r} 337\\ 337\\ 343\\ 345\\ 342\\ 346\\ 355\\ 353\\ 352\\ 350\\ 350\\ \end{array}$ | $\begin{array}{r} 4.56 \\ 4.57 \\ 4.60 \\ 4.56 \\ 4.58 \\ 4.61 \\ 4.59 \\ 4.68 \\ 4.68 \\ 4.56 \end{array}$ | 390<br>390<br>393<br>395<br>390<br>390<br>390<br>395<br>410<br>420 | $\begin{array}{c} 410\\ 412\\ 416\\ 417\\ 413\\ 420\\ 422\\ 420\\ 432\\ 443\\ \end{array}$ | 435<br>430<br>442<br>443<br>440<br><br>(460)<br>(467) | 432<br>430<br>435<br>437<br>430<br>439<br>451<br>462 | $\begin{array}{c} 0.24 \\ 0.13 \\ 0.37 \\ 0.32 \\ 0.09 \\ 0.03 \\ 0.02 \\ 0.03 \\ 0.60 \\ 0.46 \end{array}$ | 5<br>6<br>5<br>4<br>5<br>6<br>5<br>5<br>5<br>5<br>5<br>5 | 54<br>41<br>78<br>78<br>33<br>16<br>15<br>22<br>87<br>75 |  |  |

The authors are indebted to Professor I. Ya. Postovskii for attention to the work and discussion of the results.

## REFERENCES

1. I. Ya. Postovskii, L. N. Pushkina, and S. A. Mazalov, ZhOKh, 32, 2599, 1962.

2. L. N. Pushkina, V. V. Tkachev, and I. Ya. Postovskii, DAN SSSR, 149, 135, 1963.

3. L. N. Pushkina and V. V. Tkachev, ZhPS, 1, 275, 1964.

- 4. L. N. Pushkina and I. Ya. Postovskii, ZhOKh, 34, 424, 1964.
- 5. L. N. Pushkina, S. A. Mazalov, and I. Ya. Postovskii, ZhOKh, 32, 2607, 1962.

6. L. S. Efros and B. A. Porai-Koshits, ZhOKh, 23, 697, 1953.

16 June 1964