PHLINOSIDES D AND E, PHENYLPROPANOID GLYCOSIDES, AND IRIDOIDS FROM PHLOMIS LINEARIS*

IHSAN ÇALIŞ,† A. AHMET BAŞARAN, İCLAL SARACOĞLU, OTTO STICHER‡ and PETER RÜEDIŞ

Department of Pharmacognosy, Faculty of Pharmacy, Hacettepe University, TR-06100 Ankara, Turkey; ‡Departement Pharmazie, Eidgenössische Technische Hochschule Zürich, CH-8092 Zürich, Switzerland; §Organisch-Chemisches Institut, Universität Zürich, CH-8057 Zürich, Switzerland

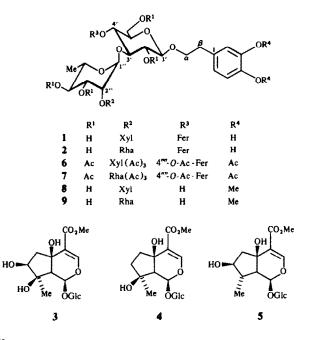
(Received 1 January 1991)

Key Word Index--Phlomis linearis; Lamiaceae; phenylpropanoid glycosides; phlinoside D; phlinoside E; iridoids; lamiide; ipolamiide; auroside.

Abstract—Two new phenylpropanoid glycosides, phlinosides D and E were isolated from the methanolic extract of the aerial parts of *Phlomis linearis*, along with the known iridoid glucosides, lamiide, ipolamiide and auroside (=5-hydroxy-8-epiloganin). On the basis of chemical and spectral evidence the structures of phlinosides D and E were determined as 3,4-dihydroxy- β -phenylethoxy-O- β -D-xylopyranosyl- $(1 \rightarrow 2)$ - α -L-rhamnopyranosyl- $(1 \rightarrow 3)$ -4-O-ferul-oyl- β -D-glucopyranoside and 3,4-dihydroxy- β -phenylethoxy-O- α -L-rhamnopyranosyl- $(1 \rightarrow 2)$ - α -L-rhamnopyranosyl- $(1 \rightarrow 3)$ -4-O-feruloyl- β -D-glucopyranoside, respectively.

INTRODUCTION

Our systematic phytochemical investigations on the aerial parts of *Phlomis linearis* Boiss. & Bal. have resulted in the isolation of phenylpropanoid glycosides, such as phlinosides A, B, C [1], verbascoside (= acteoside), leucosceptoside A and martynoside [2]. In a continuation of our work on the glycosidic constituents of *P. linearis*, we further isolated two new trisaccharide esters named phlinosides D (1) and E (2) which are closely related to phlinosides B and C only differing from the nature of their acyl moieties. We have also isolated two minor iridoid glucosides, ipolamiide (4) and auroside (5) together with lamiide (3) reported as a major iridoid glucoside [2].


RESULTS AND DISCUSSION

Compounds 1 and 2 were obtained as amorphous compounds $C_{35}H_{46}O_{19}$ and $C_{36}H_{48}O_{19}$ (FAB mass spectrometry), respectively. The UV spectra of 1 and 2 confirmed their polyphenolic nature. Their IR spectra also showed similar absorption bands, hydroxyl groups, α,β -unsaturated esters and aromatic rings (see Experimental). The ¹H NMR spectra of 1 and 2 exhibited characteristic signals belonging to (*E*)-ferulic acid and 3,4dihydroxyphenylethanol moieties (six aromatic protons, two ABX systems, and olefinic protons, AB system, for each). Additionally a methoxyl group, a benzylic methylene and two non-equivalent protons were observed for

†Author to whom correspondence should be addressed.

each. Moreover, three doublets of the anomeric protons for 1 and 2 indicated their trisaccharide structures. Three signals of anomeric protons appeared at $\delta 4.33$ (J = 7.2 Hz), 4.37 (J = 7.8 Hz) and 5.45 (J = 1.5 Hz) for 1, are consistent with the following C-1 configurations: β for Dglucose, β for D-xylose and α for L-rhamnose, respectively. On the other hand, the signals at $\delta 4.38$ (J = 7.9 Hz), 4.89(J = 1.5 Hz) and 5.36 (J = 1.7 Hz) for 2, are assigned to the anomeric protons of D-glucose and two L-rhamnose units.

The FAB-mass spectra of 1 and 2 exhibited $[M + H]^+$ ions at m/z 771 and 785 confirming the proposed structures. In both spectra, a fragment observed at m/z 177

^{*}This work was first presented at the International Joint Symposium of Gesellschaft für Arzneipflanzenforschung---American Society of Pharmacognosy---Association Française pour l'Enseignement et la Recherge en Pharmacognosie---Phytochemical Society of Europe held in Bonn, Germany on 17-22 July 1990.

(176) gives evidence for ferulic acid as their acyl moieties. The signals of H-4' of the glucose units of 1 (δ 4.92, t, J = 9.2 Hz) and 2 (δ 4.92, t, J = 9.3 Hz) indicate that acylations at these locations are by *trans*-feruloyl units.

Acetylation of 1 and 2 gave undecaacetates, 6 and 7, respectively. The ¹H NMR spectra of 6 and 7 revealed the presence of three aromatic and seven aliphatic acetyl groups for each (Table 1). In the FAB-mass spectra of 6 and 7 the [M]⁺ peaks were not observed. The peaks recorded were at m/z 259 [triacetyl-xylose]⁺ and 489 [pentaacetyl-xylosyl-rhamnose]⁺ for 6, and at m/z 273 [triacetylrhamnose]⁺ for 7. In the ¹H NMR spectra of 6 and 7 no downfield shifts occurred upon acetylation for H-3' (δ 3.99 and 3.96, respectively, each t, J = 9.4 Hz) and H-2'' (δ 3.91 and 3.89, respectively, each dd, J = 1.7/3.3 Hz) confirming the interglycosidic linkages. The above data shows that 1 and 2 have similar structures to those of

phlinosides B and C, respectively, except for their acyl moieties [1].

In order to verify this assumption, phlinosides B, C and 1, 2 were methylated with diazomethane and treated with aqueous KOH. Phlinoside B and 1 yielded 8 assigned as deacyl phlinoside B dimethyl ether, while phlinoside C and 2 yielded 9 assigned as deacyl phlinoside C dimethyl ether supporting the same glycosidation pattern in 1 as that of phlinoside B and 2 with that of phlinoside C.

On the basis of chemical and spectral evidence the structures of 1 and 2 were determined as 3,4-dihydroxy- β -phenylethoxy-O- β -D-xylopyranosyl- $(1 \rightarrow 2)$ - α -L-rhamno-pyranosyl- $(1 \rightarrow 3)$ -4-O-feruloyl- β -D-glucopyranoside and 3,4-dihydroxy - β - phenylethoxy-O- α -L-rhamnopyranosyl- $(1 \rightarrow 2)$ - α -L-rhamnopyranosyl- $(1 \rightarrow 3)$ -4-O-feruloyl- β -D-glucopyranoside, respectively.

All spectral data (UV, IR, ¹H, ¹³C NMR and FAB-MS) obtained for 3–5 are in good agreement with the reported

Table 1. ¹H NMR spectral data of compounds 6 and 7 (400 MHz, CDCl₃, δ ppm)

	Н	6		7		J (Hz)
Aglycone	2	7.03	br s	7.03	br s	
	5	7.10	br s	7.09	br s	
	6	7.10	br s	7.09	br s	· -
	α	4.12	m	4.12	m	—
		3.73.6	m	3.72-3.62	m	_
	β	2.88	m	2.88	m	_
Glucose	1'	4.39	d	4.42	d	(8.0)
	2'	5.06	dd	5.07	dd	(8.0/9.4)
	3′	3.99	t	3.96	t	(9.4)
	4'	5.21	t	5.23	t	(9.5)
	5'	3.7-3.6	m	3.72-3.62	m	
	6'A	4.13	dd	4.17	dd	(12/3)
	6' B	4.18	dd	4.22	dd	(12/4.6)
Rhamnose	1″	4.96	d	4.92	d	(1.7)
	2′′	3.91	dd	3.89	dd	(1.7/3.3)
	3‴	4.93	dd	5.04	dd	(3.3/10)
	4‴	4.79	t	4.95	t	(9.6)
	5″	3.73	m	3.76	m	_
	6"	1.04	d	1.08	d	(6.3)
Xylose	1‴	4.41	d		_	(7.0)
(terminal)	2‴	4.93	dd		_	(7.0/8.7)
	3‴	5.15	t			(8.7)
	4‴	4.88	ddd		_	(8.7/4.9/9.0
	5‴A	3.29	dd		_	(11.9/9.0)
	5‴B	4.05	dd		-	(11.9/5.1)
Rhamnose	1‴	-		4.74	d	(1.6)
(terminal)	2′′′			5.24	dd	(1.6/3.4)
	3‴		· _	5.28	dd	(3.4/9.7)
	4‴	_		5.03	t	(9.8)
	5‴	_		3.72-3.62	m	
	6‴	_	_	1.19	d	(6.3)
Feruloyl	2''''	7.08	d	7.08	d	(1.8)
moiety	5''''	7.05	d	7.05	d	(8.1)
	6''''	7.11	dd	7.12	dd	(8.1/1.8)
	x'	6.34	d	6.36	d	(16.0)
	β'	7.70	d	7.71	d	(16.0)
	OMe	3.85	s	3.85	s	

Ac (for 6); 2.32, 2.30, 2.29 (arom.), 2.1, 2.09, 2.05 (×2), 2.02, 1.96, 1.70 (aliph.); (for 7); 2.32, 2.29, 2.27 (arom.), 2.13, 2.09, 2.03, 2.02, 1.99, 1.98, 1.77 (aliph.).