New Synthesis of Pteridines from the Reaction of 6-Amino-1,3-dimethyl-5nitrosouracil with Phenacylidenetriphenylphosphoranes

By Keitaro Senga,* Hashime Kanazawa, and Sadao Nishigaki

(Pharmaceutical Institute, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160, Japan)

Summary Treatment of 6-amino-1,3-dimethyl-5-nitrosouracil with phenacylidenetriphenylphosphoranes gave the corresponding 7-substituted 1,3-dimethyl-lumazines.

A RECENT paper described a new synthesis of purines by the reaction of 6-amino-1,3-dimethyl-5-nitrosouracil (I) with benzylidenetriphenylphosphoranes. We now report a new, convenient synthesis of pteridines by treatment of (I) with phenacylidenetriphenylphosphoranes.

TABLE

Phenacyl halide	Product ^a	Yield/%
PhCOCH ₂ Br	 (II)	67
p-MeC ₆ H ₄ COCH ₂ Br	 (III)	39
p-MeO·C ₆ H ₄ COCH ₂ Br	 (IV)	55
p-ClC ₆ H ₄ COCH ₂ Br	 (V)	55
p-PhC ₆ H₄COCH₂Br	 (VI)	64
	• ,	

a None of the products melted below 300 °C.

To a pre-boiled (30 min) suspension of (I) (0.5 mmol), phenacyl bromide (1.5 equiv.) and Ph₃P (1.5 equiv.) in tetrahydrofuran-aqueous NaOH (10%, 0.5 ml) was added and the mixture was refluxed for 30 min. Evaporation in vacuo, followed by dilution with ethanol caused the separation of 1,3-dimethyl-7-phenyl-lumazine (II)² in good yield (Scheme). Other substituted phenacyl halides† provided the corresponding pteridines (see Table).‡

This new pteridine synthesis presumably proceeds through the initial formation of the pyrimidine anil§ by a type of Wittig reaction between the nitroso-group of (I) and phenacylidenetriphenylphosphoranes and subsequent dehydrative cyclization. The formation of phenacylidene-

SCHEME

triphenylphosphoranes (Wittig reagents) seems reasonable, since in the absence of base or Ph₃P no reaction occurred.

(Received, 13th May 1976; Com. 539.)

- † In these instances, prolonged pre-boiling (ca. 1–2 h) is necessary for the completion of the formation of corresponding phenacylidenetriphenylphosphonium salts.
 - ‡ Satisfactory analytical and spectral data were obtained for all products.
- § The reaction of diphenylmethylidenetriphenylphosphorane or fluorenylidenetriphenylphosphorane with nitrosobenzene has been reported to give benzophenone anil and fluorenone anil, respectively (A. Schönberg and K. H. Brosowski, Chem. Ber., 1959, 92, 2602).

 - K. Senga, H. Kanazawa, and S. Nishigaki, J.C.S. Chem. Comm., 1976, 155.
 G. P. G. Dick, H. C. S. Wood, and W. R. Logan, J. Chem. Soc., 1956, 2131.