Umsetzungen von Metall- und Metalloidverbindungen mit mehrfunktionellen Molekülen. XVII [1]

Synthese von Silylamidinen und deren Umsetzung mit Boranderivaten

Von W. MARINGGELE und A. MELLER

Göttingen, Anorganisch-Chemisches Institut der Universität

Inhaltsübersicht. Durch Lithiierung von silylierten Aminen und anschließende Umsetzung mit Imidhalogeniden werden, ebenso wie im Falle der Reaktion von N, N'-Diphenylformylamidin mit Chlortrimethylsilan und Triäthylamin, Silylamidine erhalten. Setzt man N, N'-Dimethyl-N-trimethylsilyl-äthylendiamin mit n-Butyl-lithium und Imidhalogeniden um, so erhält man Trimethylsilylaminoalkylamidine. Bei der Reaktion der Silylamidine bzw. der Trimethylsilylaminoalkylamidine mit Halogendiorganylboranen erhält man die entsprechenden Amidinoborane. Die Verbindungen werden analytisch und spektroskopisch (¹H-, ¹¹B-, ¹⁹F-NMR; MS; IR) charakterisiert.

Reaction of Metal and Metalloid Compounds with Polyfunctional Molecules. XVII. Synthesis of Silylamidines and their Reaction with Boranes

Abstract. By silylation of lithiated amines and subsequent reaction with imid halides, as well as by reaction of N, N'-diphenylformylamidine with chlorotrimethylsilane and triethylamine, silylamidines were obtained. By reaction of N, N'-dimethyl-N-trimethylsilylethylenediamine with n-butyllithium and imid halides, trimethylsilylaminoalkylamidines are formed. By reacting silylamidines or trimethylsilylaminoalkylamidines with halogenodiorganylboranes the corresponding amidinoboranes were synthesized. ¹H, ¹¹B, ¹⁹F n.m.r. spectra, mass spectra and characteristic i.r. group frequencies are reported.

Säureamide liegen wegen der C-N-Rotationshinderung, welche durch eine teilweise Überlappung der p-Orbitale von C und N bedingt ist, als eis-trans Isomere vor [2]. Dieser Umstand begünstigt auch das Auftreten tautomerer Formen; aus diesem Grunde liegen Silylamide [3] und Amidoborane [4] als silicotrope bzw. berotrope Gemische der entsprechenden Isomeren vor.

Analog dazu treten auch bei Amidinen wegen der C-N-Rotationshinderung Isomeren-Gemische auf [5-14]. Die entsprechenden Silylamidine sind jedoch noch nicht bekannt.

Umsetzungen von Trialkylboranen mit Amidinen sind bereits beschrieben worden [15]. Sie ergeben nach

$$R_{3}B + R^{2} - N = C \begin{pmatrix} R^{1} \\ NR^{3}R^{4} \end{pmatrix} \rightarrow R_{3}B \cdot R^{2}N = C \begin{pmatrix} R^{1} \\ NR^{3}R^{4} \end{pmatrix}$$
(1)

Addukte. In einigen Fällen führen diese Reaktionen ebenso wie jene zwischen Diorganylthioalkylboranen und Amidinen nach

zu den entsprechenden Amidinoboranen [16, 18]. Diese Verbindungen liegen entweder vollständig oder teilweise mit intramolekularer B-N-Koordination nach

$$R^{3}-N \xrightarrow{4\pi} N-R^{2} \implies R_{2}B-N \xrightarrow{1} C=N-R^{2}$$
(3)

vor. Bei der Reaktion von (unsymmetrischen) N.N-Dialkylamidinen mit Diorganylthioorganylboranen Gl. (4))

$$R_{2}BSR^{3} + HN = C \xrightarrow{R^{1}}_{NR_{2}^{2}} \xrightarrow{60-90^{\circ}C} R_{2}B - N = C \xrightarrow{R^{1}}_{NR_{2}^{2}} + R^{2}SH$$
 (4)

wurden Dialkylborylamidine mit einer Bindung des Bor-Atoms an die Iminogruppe des Amidins erhalten [17].

In dieser Arbeit werden Silylamidine und Amidinoborane beschrieben, von denen letztere vollständig in der offenkettigen Form vorliegen.

Setzt man Trimethylsilylamine mit n-Butyl-lithium und anschließend mit den entsprechenden Imidhalogeniden um, so erhält man die Silylamidine entsprechend (Gl. (5) und (6))

$$(CH_3)_3Si - N - R + n - C_4H_9Li \rightarrow (CH_3)_3Si - N - R + n - C_4H_{10}$$

$$|$$

$$H$$

$$Li$$

$$(5)$$

Verb.	\mathbf{R}	\mathbb{R}^1
1	$2,6(CH_3)_2C_6H_3$	$C_{6}H_{5}$
2	$2, 4, 6(CH_3)_3C_6H_2$	C_6H_5
3	$3-CF_3-C_6H_4$	C_6H_5
4	$2 - F - C_6 H_4$	$3-CF_3-C_6H_4$
ð	$2 - F - C_6 H_4$	C_6H_5
6	$3-CF_3-C_6H_4$	$3-CF_3C_6H_4$
7	C_6H_5	C_6H_5

Im Falle der Silylamidine muß mit dem Auftreten mehrerer isomerer Strukturen gerechnet werden. Neben der syn-anti-Isomerisierung [5] (Gl. (7))

$$\begin{array}{c|c} R-N & Si(CH_3)_3 \\ CF_3 & C=N \\ Syn & CF_3 \\ Syn & anti \end{array}$$
(7)

können Rotationsisomere [5, 14] auftreten, welche durch eine Rotationshinderung [5] um die andere C-N-Bindung, die ebenfalls Doppelbindungsanteile aufweist, zustande kommen:

Diese Rotationsbarriere wird durch elektronenanziehende Substituenten wie die CF_a -Gruppe erhöht, durch elektronenabgebende erniedrigt [5].

Daneben muß noch, ähnlich wie bei den nichtsilylierten Amidinen [8-14], mit Tautomerieeffekten gerechnet werden. In den ¹⁹F-NMR-Spektren von 1 und 2 findet man für die CF₃-Gruppe 2 Signale bei -61,9 und -60,4 bzw. -61,8 und -61,6 ppm. Dies läßt auf ein silicotropes Gleichgewicht, bei dem die Trimethylsilylgruppe vom einen Stickstoffatom zum anderen wandert, und auf eine Verlagerung der C=N-Doppelbindung nach

schließen. Für 6 und 7 kann eine solche Aufspaltung durch Wanderung der Trimethylsilylgruppe ausgeschlossen werden, da durch $R = R^1$ die Formen R und S identisch werden. Im Falle von 7 findet man im ¹⁹F-NMR-Spektrum ein Signal bei -57,42 ppm. Die bei 6 gefundene Aufspaltung der Trimethylsilylgruppe im ¹H-NMR-Spektrum und der CF₃-Gruppe im ¹⁹F-NMR-Spektrum kann durch die bereits genannten übrigen isomeren Formen erklärt werden.

Bemerkenswert ist auch die Bruchstückbildung für 1 und 4 bei der Aufnahme der Massenspektren. So findet man in diesen beiden Fällen u. a. als Bruchstücke \mathbf{R} -NC und \mathbf{R}^1 -NC. Auch dies weist auf eine Wanderung der Trimethylsilylgruppen nach Gl. (9) hin.

Da die Si-N-Bindung durch Halogenborane bereits unter milden Bedingungen nach

$$- \underbrace{\mathbf{Si}}_{l} - \mathbf{N} \left\langle \mathbf{X} - \mathbf{B} \rightarrow - \underbrace{\mathbf{Si}}_{l} - \mathbf{X} + \right\rangle \mathbf{B} - \mathbf{N} \left\langle \mathbf{M} \right\rangle$$
(10)

gespalten wird [19-22], haben wir so ausgehend von Silylamidinen in guter Ausbeute die entsprechenden Amidinoborane herstellen können (Gl. (11))

$$\begin{array}{c} CF_{3}-C=N-R^{1} \\ | \\ (CH_{3})_{3}Si-N-R \end{array} \xrightarrow{R^{2}} BX \xrightarrow{} CF_{3}-C=N-R^{1} \\ R_{2}^{2}B-N-R \\ 8-23 \\ 8-12 \quad X = Br \\ 13-23 \quad X = Cl \end{array}$$
(11)

Die Verbindungen sind in Tab. 1 zusammen mit den IR-Werten für ν (C=N) (Kapillarschichtaufnahmen) zusammengestellt.

Verb.	R	R'	\mathbb{R}^2	\mathbf{R}^{3}	ν (C=N) [cm ⁻¹]
8	3-CF ₃ -C ₆ H ₄	3-CF ₃ -C ₅ H ₄	CH3	CH3	1675
9	2-F-C.H.	C _s H ₅	CHa	CH ₃	1675
10	2,4,6(CH3)3C5H2	CeHa	CH ₃	CH ₃	1678
11	$2 - F - C_{e}H_{4}$	$2 - CF_3 - C_6H_4$	CH3	CH3	1680
12	2,6(CH ₃) ₂ C ₅ H ₃	$C_{s}H_{\delta}$	CH ₂	CHa	1680
13	$2,4,6(\mathrm{CH_3})_3\mathrm{C_6H_2}$	$C_{\delta}H_{\delta}$	C_6H_5	$C_{\mathfrak{s}}H_{\delta}$	1680
14	C_sH_s	C_sH_δ	CH3-N-CH2-	CH3-N-CH2-	1680
15	$2 - F - C_{\bullet}H_{\bullet}$	$3-CF_3-C_8H_4$	CH3-N-CH2-	CH3-N-CH2-	1680
16	2-F-C ₀ H ₄	C_6H_6	CH ₃ -N-CH ₂	CH ₃ -N-CH ₂ -	1680
17	2,6(CH3)2C3H3	C ₆ H ₅	N(CH ₃) ₂	N(CH _s) ₂	1655
18	$2 - F - C_6 H_4$	3-CF ₃ -C ₆ H ₄	N(CH ₃) ₃	N(CH ₃) ₂	1660
19	2-F-C.H.	3-CF3-C,H4	N(CH ₃) ₃	C _s H ₅	1660
20	2:F-C.H.	C,H,	N(CH ₃) ₂	$N(CH_3)_2$	1660
21	2-F-C ₆ H ₄	C.H.	N(CH ₃) ₂	N(CH _s) ₂	1680
22	$2 - F - C_{\epsilon} H_{4}$	3-CF ₃ -C ₈ H ₄	$N(C_2H_5)_2$	$N(C_2H_5)_2$	1660
23	2-F-C ₆ H ₄	$C_{s}H_{5}$	$N(CH_2)_2$	C ₆ H ₅	1660

Tabelle 1 Amidinoborane 8-23

Für die Struktur der Amidinoborane gelten die gleichen Überlegungen wie für jene der Silylamidine. Auch hier können neben syn-anti-Isomeren die Rotationsisomeren auftreten. Ferner kann ein borotropes Gleichgewicht nach (Gl. (13))

 $R \xrightarrow{B} R^{2} \xrightarrow{R^{2}} B \xrightarrow{R^{2}} B \xrightarrow{R} R^{2} \xrightarrow{R} R^$

durch 1,3-Wanderung der Diorganylborylgruppe unter Verschiebung der C=N-Doppelbindung auftreten. Zudem ist neben der offenkettigen Struktur eine cyclische mit intramolekularer B-N-Koordination nach

möglich. Wegen der Ausbildung des borotropen Gleichgewichts ist, worauf in der Literatur [16] nicht hingewiesen wird, bei dieser intramolekularen Koordination auch das Gleichgewicht

möglich.

Wie die Werte für ¹¹B-NMR von 8-23 zeigen, liegen sämtliche Verbindungen in der bisher beschriebenen offenkettigen Form vor. Die ¹H- und ¹⁹F-NMR-Spektren zeigen eine Aufspaltung einzelner Signale, welche durch die Annahme eines borotropen Gleichgewichts und das Auftreten von syn-anti und Rotationsisomeren erklärt werden kann. In den ¹¹B-NMR-Spektren wird wegen der großen Halbwertsbreite nur ein Signal beobachtet.

Im Einklang mit der Annahme eines borotropen Gleichgewichts steht auch das Massenspektrum von 15. Als Bruchstücke treten hier u. a. sowohl $3\text{-}CF_3-C_6H_4NC$ als auch $2\text{-}F\text{-}C_6H_4NC$ auf, ähnlich wie dies auch bei den Silylamidinen der Fall ist.

Am Beispiel des N, N'-Diphenylformamidins gelingt der Nachweis, daß Amidine auch direkt mit Trimethylchlorsilan unter Zusatz von Triäthylamin silyliert werden können nach

$$\begin{array}{c} H-C=N-C_{6}H_{5} \\ i \\ H-N-C_{6}H_{5} \end{array} + N(C_{2}H_{5})_{3} + (CH_{3})_{2}SiCl \rightarrow \begin{array}{c} H-C=N-C_{6}H_{5} \\ i \\ C(H_{3})_{3}SiN-C_{6}H_{5} \end{array} + [HN(C_{2}H_{5})_{3}]^{\oplus}Cl^{\odot}.$$
(16)

Setzt man 24 mit Bromdimethylboran nach

$$\frac{\mathrm{H}-\mathrm{C}=\mathrm{N}-\mathrm{C}_{6}\mathrm{H}_{5}}{(\mathrm{C}\mathrm{H}_{3})_{2}\mathrm{SiN}-\mathrm{C}_{6}\mathrm{H}_{5}} + (\mathrm{C}\mathrm{H}_{3})_{2}\mathrm{B}-\mathrm{Br} \rightarrow (\mathrm{C}\mathrm{H}_{3})_{3}\mathrm{SiBr} + \frac{\mathrm{H}_{-}\mathrm{C}=\mathrm{N}-\mathrm{C}_{6}\mathrm{H}_{5}}{\mathrm{H}_{3}\mathrm{C}} \xrightarrow{|}{\mathrm{B}-\mathrm{N}-\mathrm{C}_{6}\mathrm{H}_{5}}$$
(17)
25

um, so erhält man das ebenfalls offenkettige Amidinoboran 25.

Ausgehend von geeignet substituierten Diaminen kann man Verbindungen herstellen, in denen die Amidinogruppe nicht direkt an das Siliciumatom gebunden ist. Beispielsweise führt die Umsetzung von N,N'-Dimethyläthylendiamin mit n-Butyl-lithium und Trimethylchlorsilan zunächst zum monosilylierten Diamin (Gl. (18))

Dies wird nochmals lithiiert und anschließend mit dem Imidhalogenid umgesetzt:

33-40 X = Cl

32

führt zu Aminoboranen, welche auch eine Amidinogruppierung im Molekül enthalten. Die entsprechenden Silylamidine sind in Tab. 2, die daraus hergestellten Boranderivate in Tab. 3 zusammengefaßt.

Tabelle 2 Silylamidine des Typs

$$(CH_3)_3Si N-CH_2-CH_2-N CH_3 C=N-R$$

Verb.	R			
26	$2, 6(CH_3)_2C_6H_3$			
27	$3-CF_3-C_6H_4$			
28	$2 \cdot \mathbf{F} \cdot \mathbf{C}_6 \mathbf{H}_4$			
29	$C_{6}H_{5}$			
30	$2, 4(CH_3)_2C_6H_3$			
31	$2-CF_3-C_6H_4$;	····	 <u></u>

Tabene o Amunubolane des I	elle 3 Amidinoborane de	s Tv	DS:
----------------------------	-------------------------	------	-----

In den Silylamidinen 26-31 und den Amidinoboranen 32-40 ist keine Möglichkeit für eine 1,3-Wanderung der Trimethylsilylgruppe bzw. der Diorganylborylgruppe mehr gegeben. Indes können sowohl syn-anti-Isomere als das Rotationsisomere auftreten, was zu einer Aufspaltung der Signale in den NMR-Spektren führt. Wie die ¹¹B-NMR-Spektren zeigen, liegen die Amidinoborane 32-35und 37-40 mit 3bindigem Bor vor. Nur 36 enthält einen geringen Anteil an tetrakoordiniertem Bor, welches sich durch die Annahme einer intramolekularen Koordination nach

erklären läßt.

Für die Förderung dieser Arbeit danken wir der Deutschen Forschungsgemeinschaft und dem Fonds der Chemie.

Herrn Dr. REMBERG (Organisch-Chemisches Institut der Universität Göttingen) danken wir für die Aufnahme einiger Massenspektren.

Experimenteller Teil

Alle Reaktionen wurden in N2-Atmosphäre und getrockneten Lösungsmitteln ausgeführt.

2-Chlor-1, 3-dimethyl-1, 3, 2-diazaborolidin [23], Bis(dimethylamino)phenylboran [24], Tris-(dimethylamino)boran [25], Bis(dimethylamino)chloroboran [26], Chlordimethylaminoboran [27 bis 29], Phenyldichloroboran [30], Bromdimethylboran [31, 32], Tetramethylzinn [33, 34] und Chlor-

Verb.	¹ Η-ΝΜR δ(ppm)		¹⁹ F-NMR δ(ppm)	v (C=N) [cm ⁻¹]
1	Si(CH ₃) ₃ o-CH ₃ C ₆ H ₅ + C ₆ H ₃ Int. 1:II:III = 9:	0,25 (s) I 2,18 (s) II 6,66 bis 7,26 (br) III :6:8	CF _a -61,9 (s) I -60,4 (s) II Int. I:II = $3:2$	1655
2	$\begin{aligned} & Si(CH_3)_3 \\ & o_{-} + p_{-}CH_3 \\ & C_8H_5 + C_6H_2 \\ & Int.I:II:III = 9; \end{aligned}$	0,24 (s) I 2,28 (s) II 6,83 bis 7,37 (br) III 3:7	$CF_{*} - 61,8 (s) I$ -61,6 (s) II Int. I:II = 1:2	1650
3	Si(('H ₃) ₃	0,23 (s) I 0,27 (s) II	m-CF ₃ $-57,6$ (br) I CF ₃ -C=N- $-63,08$ (s) II	1660
	Int. $I:II = 20:1$ $C_{g}H_{5} + C_{g}H_{4}$ Int. $[I + II]:III =$	6,92 bis 7,50 (br) III = 1:1	$\begin{array}{c} -63,17 \text{ (s) III} \\ \text{Int. II:III} = 20:1 \\ \text{Int. I:[II + III]} = 1:1 \end{array}$	
4	$\begin{array}{l} \mathrm{Si}(\mathrm{CH}_8)_3\\ \mathrm{C}_8\mathrm{H}_1 + \mathrm{C}_8\mathrm{H}_4 \end{array}$	0,27 (s) I 6,94 bis 7,50 (br) II	$\begin{array}{ccc} m-CF_{4} &59,2 \ (br) \ I \\ CF_{3}-C=N & -63,2 \ (s) \ II \\ I \end{array}$	1665
	Int. I:II = $9:8$		o·F -123 bis -124 (br) III Int. I:III:III = 3:3:1	
5	$\begin{aligned} &\mathrm{Si}(\mathrm{CH}_{\mathtt{S}})_{\mathtt{S}} \\ &\mathrm{C}_{\mathtt{S}}\mathrm{H}_{\mathtt{S}} + \mathrm{C}_{\mathtt{S}}\mathrm{H}_{\mathtt{L}} \\ &\mathrm{Int.} \ \mathrm{I:II} = 1:1 \end{aligned}$	0,24 (s) I 6,70 bis 7,32 (br) II		1660
6	Si(CH ₃) ₃ Int. I:II = 8:1 $C_{4}H_{4} + C_{4}H_{5}$ Int. [I + II]:III =	0,26 (s) I 0,27 (s) II 6,87 bis 7,61 (br) III 9:8	-63,28 (s) I -63,42 (s) II Int.I:II = 8:1	1660
7	$Si(CH_3)_3$ $C_8H_5 + C_8H_5$ Int.I:II = 9:10	0,22 (s) I 6,83 bis 7,35 (br) II	57,42 (s)	165 0
26	Si(CH ₃) ₃ o-CH ₃ 2× N-CH ₃ CH ₂ -CH ₂ C ₆ H ₂ Int. I:II:III:IV:V	0,04 (s) I 2,03 (s) II 2,35 (s) III 2,86 bis 3,08 (m) IV 6,72 bis 7,08 (br) V V = 9:6:6:4:2	-64,50 (s) I -64,42 (s) II Int. I:II = 1:5	1 665
27	Si(CH ₃) ₃ $2 \times N - CH_3$ $- CH_3 - CH_$	0,06 (s) I 2,47 (s) II 2,95 bis 3,05 (m) III 6,58 bis 7,38 (br) IV = 9:6:4:4	$\begin{array}{l} -63,35 \ (s) \ I \\ -63,25 \ (s) \ II \\ -59,92 \ (s) \ III \\ Int. \ I:II = III:IV = 1:3 \\ Int. \ [I + II]:[III + IV] = 1:1 \end{array}$	1 6 50
28	Si(CH ₃) ₃ $2 \times N - CH_3$ $CH_2 - CH_2$ C_8H_4 Int. I:II:III:IV =	0,05 (s) I 2,49 (m) II 3,04 (m) III 6,62 bis 7,q7 (br) IV = 9:6:4:4	_	1650
29	Si(CH ₃) ₃ $2 \times N - CH_3$ $-CH_2 - CH_2 - CH_2 - C_6H_9$ Int. 1:II:III:IV =	0,05 (s) I 2,46 (s) II 2,94 (m) III 6,58 bis 7,29 (br) IV = 9:6:4:5	60,05 (s)	1650

Tabelle 4Chemische Verschiebungen (NMR: δ^{19} F) und Lage der ν (C=N)-Schwingung im IR-Spektrum(Kapillarschichtaufnahme) der dargestellten Silylamidine 1-7 und 26-31

Tabelle 4	(Fortsetzung)
-----------	---------------

Verb.	¹ H-NMR δ(ppm)		¹⁹ F-NMR δ(ppm)	$\frac{\nu (C=N]}{[cm^{-1}]}$
30	Si(CH ₃) ₃ o-CH ₃ p-CH ₃ 2×NCH ₃	0,05 (s) I 2,05 (s) II 2,22 (s) III 2,47 (s) IV	61,70 (8)	1650
30	CH2CH2- C6H3 Int. I:II:III:IV:	2,85 bis 2,98 (m) V 6,34 bis 6,96 (br) VI V:VI = 9:3:3:6:4:3		
31	Si(CH ₂) ₃ $2 \times N - CH_3$ $- CH_2 - CH_2 - CH_2 - C_4H_4$ Int. I:II:III:IV	0,05 (s) I 2,28 bis 2,50 (m) II 2,95 bis 3,16 (m) III 6,50 bis 7,05 (br) IV = 9:6:4:4	$\begin{array}{l} -62,52 \ (\text{s}) \ \text{I} \\ -62,38 \ (\text{s}) \ \text{II} \\ -60,40 \ (\text{s}) \ \text{III} \\ -60,25 \ (\text{s}) \ \text{IV} \\ \text{Int. I:II} = \text{III:IV} = 1:2 \\ \text{Int.}[\text{I} + \text{II}]:[\text{III} + \text{IV}] = 1:1 \end{array}$	1660

Tabelle 5 Chemische Verschiebungen (NMR: δ^{i} H, δ^{i} sF, δ^{i} B) der dargestellten Amidinoborane 8-23, 25 und 32-40

Verb.	¹ H-NMR δ(ppm)		¹⁹ F-NMR δ(ppm)	¹¹ В-NMR d(ppm)
8	$B(CH_3)_2$ $C_6H_4 + C_6H_4$ Int.I:II = 3:4	0,48 (s) I 6,97 bis 7,48 (br) II	63,5 (m) I 68,6 (s) II Int. I:II = 2:1	55,1
9	$B(CH_s)_2$ Int.I :II = 1:1 $C_sH_s + C_sH_4$ Int. [I + II]:III =	0,37 (8) I 0,42 (8) II 6,75 bis 7,40 (br) III = 2:3	$CF_{3} - 67,7 (s) I$ $-68,4 (s) II$ Int.I:II = 4:3 o-F -119,9 (m) III -122,3 (m) IV Int. [I + II]:[III + IV] = 1:1	55,2
10	$\begin{split} & B(CH_3)_3 \\ & o \cdot und \ p \cdot CH_3 \end{split}$ $Int. II:III:IV:V \\ & C_6H_3 + C_6H_2 \\ & Int.I:[II + III + $	$\begin{array}{c} 0,45 \ (s) \ I \\ 1,67 \ (s) \ II \\ 2,07 \ (s) \ III \\ 2,13 \ (s) \ IV \\ 2,18 \ (s) \ V \\ = 4:1:2:4 \\ 6,62 \ bis \ 7,13 \ (br) \ VI \\ IV + V]:VI = 6:9:7 \end{array}$		53,0
11	$B(CH_3)_2$ Int.I:II = 3:2 $C_8H_4 + C_8H_4$ Int. [I + II]:III =	0,40 (s) I 0,45 (s) II 6,79 bis 7,46 (br) III = 3:4	_	55,0
12	$B(CH_3)_2$ o-CH ₃ Int. II:III = 2:1 $C_8H_8 + C_8H_3$ Int. I: [II + III]:	0,45 (s) I 1,70 (s) II 2,08 (s) III 6,38 bis 7,14 (br) IV IV = 3:3:4	-66,6 (s) I -69,1 (s) II Int. I:II = 6:1	52,0
13	o- und p-CH _s Int. I:II:III = 1 $B(C_{6}H_{s})_{2} + C_{6}H_{5}$ - Int. [I + II + III	1,72 (s) I 2,08 (s) II 2,20 (s) III :5:1 + $C_{6}H_{2}$ 6,60 bis 8,00 (br) IV :]:IV = 9:17	-66,7 (s) I -67,6 (s) II Int. I:II = 4:1	-

Verb.	¹ Η-ΝΜR δ(ppm)		¹ °F-NMR δ(ppm)	¹¹ Β-ΝΜR δ (ppm)
14	$2 \times -N - CH_3$ -CH ₂ - CH ₂ - C ₆ H ₅ + C ₆ H ₅ Int. I:H:III = 3:2	2,13 (s) I 2,68 (s) II 6,92 bis 7,37 (br) III :5	64,0 (8)	35,1
15	$2 \times -N - CH_3$ CH ₂ CH ₂ C ₆ H ₄ + C ₆ H ₄ Int. I:II:III = 3:2	2,20 (t) I 2,72 (q) II 6,88 bis 7,42 (br) III :4	_	24,5
16	$2 \times -N-CH_a$	2,08 (s) I 2,18 (s) II 2.28 (s) III	-64.0 (s) I -66.8 (s) II Int. I:II = 3:2	24,7
	Int. I:II:III = 1:8 -CH ₂ -CH ₂ - Int. IV:V = 1:4	:1 2,67 (s) IV 2,69 (s) V		
	$C_sH_s + C_sH_t$ Int. [I + II + III]:	6,78 bis 7,27 (br) VI [IV + V]:VI = 6:4:9		
17	o-CH ₃	2,05 (s) I 2,13 (s) II	-69,25 (s)	26,6
	Int. I:II = 1:4 B[N(CH ₃) ₂] ₂ C ₅ H ₅ + C ₆ H ₃ Int. [I + II]:III:IV	2,50 (s) III 6,88 bis 7,28 (br).IV 7 == 3:6:4		
18	$B[N(CH_3)_2]_3$ $C_6H_4 + C_6H_4$ Int. I:II = 3:2	2,27 (s) I 6,83 bis 7,44 (br) II	_	27,1
19	$N(CH_3)_3$ Int. I:II = 1:8 $C_6H_5 + C_8H_4 + C_8H_5$	2,36 (s) I 2,47 (s) II 4, 6,85 bis 7,37 (br) III	CF ₈ +60,83 (s) I -63,50 (s) II Int. I:II = 1:1 o-F -121,5 bis $-122,1$ (br)	36,2
20	Int. $[1 + II]:III =$ $B[N(CH_3)_2]_2$ $C_6H_5 + C_6H_4$ Int. $I:II = 3:2$	 6:13 2,23 (s) I 6,85 bis 7,25 (br) II 	CFs -62.8 (s) -65.1 (s) Int. 1:II = 1:1 o-F -123.4 bis 124.2 (br)	25,2
21			-69,33 (s)	35,5
22	$\begin{array}{l} 4\times \mathrm{CH}_{8} \\ 4\times \mathrm{CH}_{2} \\ \mathrm{C}_{6}\mathrm{H}_{4} + \mathrm{C}_{6}\mathrm{H}_{4} \\ \mathrm{Int.} \ 1:\mathrm{II}:\mathrm{III} = 3:2 \end{array}$	0,91 (t) I 2,92 (q) II 6,61 bis 7,36 (br) III :2	60,7 (s) I 63,4 (s) II Int. I:HI = 1 :1 o-F120,8 (br)	30,9
23	$\begin{split} \mathbf{N}(\mathbf{CH}_{\mathfrak{s}})_{\mathtt{z}} \\ \mathbf{Int.} \ \mathbf{I}:\mathbf{H} = 1:1 \\ \mathbf{C}_{\mathtt{s}}\mathbf{H}_{\mathtt{s}} + \mathbf{C}_{\mathtt{s}}\mathbf{H}_{\mathtt{s}} + \mathbf{C}_{\mathtt{s}}\mathbf{H} \end{split}$	2,38 (s) I 2,45 (s) II I, 6,77 bis 7,37 (br) III	60,9 (s) I 62,0 (s) II 63,2 (s) III 64,3 (s) IV 65,8 (s) V	32,1
			Int. I:II:III:IV:V = $10:4:5:7:3$ o-F $-120,2$ bis $-122,0$ (br)	55,0
25	$B(CH_3)_3$ o-CH_3 NCH_3 NCH_3 CH_3	0,33 (s) 1 2,05 (s) 11 2,73 (s) 111 2,88 bis 3,03 (br) IV 3,18 bis 3,50 (m) V 6,72 bis 7,07 (br) VI	-64,50 (s)	48,0

Int. I:II:III:IV:V:VI = 6:6:3:3:4:3

Tabelle 5	(Fortsetzung)
-----------	---------------

Verb.	¹ H-NMR δ(ppm)		¹ ⁹ G-NMR δ(ppm)	¹¹ B-NMR δ(ppm)
33				24,8
34	$4 \times CH_3$ o-CH ₃	0,97 (t) I 2,03 (s) IIa 2,10 (s) IIb	-64,5 (s) I -66,4 (s) II Int. I:II = 3:1	29,0
	Int. IIa:IIb = 3:1 $2 \times N - CH_3$ $4 \times CH_2$ $-CH_2 - CH_2 - C_6H_3$ Int. I:[IIa + IIb]:	2,51 (s) III 2,86 (q) IV 3,12 (s) V 6,65 bis 7,10 (br) VI III:IV:V:VI = 12:6:6:8:4:3		
35	o-CH3	2,03 (s) Ia 2,11 (s) Ib	64,45 (s)	33,4
	Int. Ia: Ib = 2:1 $2 \times N - CH_3 + B -$ $CH_2 - CH_2$ $B - C_6H_5 + C_6H_3$ Int. [Ia + Ib]:II:	-N(CH _s) ₄ 2,45 bis 2,63 (br) II 3,08 (s) III 6,75 bis 7,34 (br) IV III:IV = 3:6:2:4		
36	$\begin{array}{l} 2\times\text{0-CH}_3 + \\ 4\times\text{N-CH}_3 \end{array}$	2,02 (8) I 2,13 (8) II 2,22 (8) III 2,33 (8) IV	-64,6 (s) I $-64,5 (s) II$ $-70,3 (s) III$ Int. I:II = 2:3 Int. [I + II]:III = 4:1	24,1 I 8,0 II Int. I:II = 100:1
	$(CH_{2})_{2}$ $(CH_{2})_{2}$ $C_{0}H_{3}$ Int. I:II:III:IV = Int. [I + II + III]	2,42 bis 2,74 (m) V 3,03 (s) VI 6,77 bis 7,10 (br) VII 22:1:4:6 + IV!:V:VI:VII = 18:4:4:3		
37	-		-	25,6
38	$\begin{array}{l} 4\times \mathrm{N-CH_3} \\ 2\times -\mathrm{CH_2-CH_2} \\ \mathrm{C_eH_4} \\ \mathrm{Int. \ I:II:III} = 3:: \end{array}$	2,38 bis 2,71 (m) I 2,93 bis 3,15 (m) II 6,62 bis 7,37 (br) III 2:1	$\begin{array}{c} -59,8 \ (s) \ I \\ -63,7 \ (s) \ II \\ -63,3 \ (s) \ III \\ Int. \ II:III = 6:1 \\ Int. \ I:[II + III] = 1:1 \end{array}$	26,4
39	$\begin{array}{l} 2\times N-CH_{3}+\\ B[N(CH_{3})_{2}]_{2}\\ (CH_{3})_{2}\\ C_{3}H_{5}\\ Int. \ I:II:III:III = 18 \end{array}$	2,58 (s) I 3,17 (s) II 6,60 bis 7,33 (br) III :4:5	_	26,8
40	o-CH ₃ p-CH ₃ $2 \times N$ -CH ₄ + $B[N(CH_3)_3]_2$ -CH ₃ CH ₂ C ₄ H ₄ Int. 1:II:III:IV:V	2,09 (s) I 2,22 (s) II 2,55 (s) III 3,17 (s) IV 6,48 bis 7,02 (br) V = 3:3:18:4:2	_	25,3

diphenylboran [35] wurden nach Literaturangaben dargestellt. Die Imidhalogenide wurden durch Umsetzung von Trihalogenboran mit den entsprechenden Säureamiden erhalten [1, 36].

Darstellung von 1-7. Zu 0,5 mol des jeweiligen Trimethylsilylamins, gelöst in 500 ml Petroläther, wurden bei Raumtemperatur 0,5 mol n-Butyl-lithium, gelöst in 350 ml n-Hexan, zugetropft und anschließend 3 h am Rückfluß gekocht. Nach dem Abkühlen auf 20 °C wurde 0,5 mol des Imidhalogenids, gelöst in 250 ml Petroläther, zugetropft und abermals 3 h am Rückfluß gekocht. Dann wurde das

Tabelle 6 Massenspektrometrische Fragmentierung ausgewählter Verbindungen

Nach den m/e-Werten wird die Intensität (${}^{\circ}_{\circ}_{\circ}$) und anschließend das [Fragment] \oplus angegeben

a) Silylamidine

- 2 378/90 M; $363/50 \text{ M}-\text{CH}_3$; $309/45 \text{ M}-\text{CF}_3$; $305/20 \text{ M}-\text{Si}(\text{CH}_3)_3$; $145/20 2, 4, 6(\text{CH}_3)_3\text{C}_6\text{H}_2\text{NC}$; $119/10 2, 4, 6(\text{CH}_3) \text{ C}_6\text{H}_2$, $(C_8\text{H}_3)_3$; $C_8\text{H}_2$, $C_8\text{H}_3$, $C_8\text{H}_$
- 3 404/25 M; 389/20 M-CH₃; 385/5 M-F; 335/5 M-CF₃; 331/85 M-Si(CH₃)₃; 312/15 M-Si(CH₃)₅-F; 243/30 M-Si(CH₃)₅-F-CF₃; 168/80 CF₃CNSi(CH₃)₃; 145/85 3-CF₃-C₆H₄-; 95/15 C₆H₅NC; 77/90 C₆H₅; 73/100 Si(CH₃)₃ und weitere Bruchstücke.
- $\begin{array}{l} 4 \\ 422/50 \text{ M}; \ 407/35 \text{ M}-\text{CH}_3; \ 403/25 \text{ M}-\text{F}; \ 353/15 \text{ M}-\text{CF}_3; \ 349/100 \text{ M}-\text{Si}(\text{CH}_3)_2 \ 348/85 \text{ M}-\text{Si}(\text{CH}_3)_3-\text{H}; \ 330/100 \\ \text{M}-\text{Si}(\text{CH}_3)_3-\text{F}; \ 329/75 \text{ M}-\text{Si}(\text{CH}_3)_3-\text{F}-\text{H}; \ 327/45 \text{ M}-2 \text{ FC}_6\text{H}_4-; \ 310/40 \text{ M}-\text{Si}(\text{CH}_3)_3-2 \text{ F}-\text{H}; \ 280/90 \\ \text{M}-\text{Si}(\text{CH}_3)_3-\text{CF}_5; \ 261/60 \text{ M}-\text{Si}(\text{CH}_3)_3-\text{CF}_8-\text{F}; \ 241/80 \text{ CF}_3\text{CN}-3 \text{ CF}_3-\text{C}_6\text{H}_4; \ 208/55 \text{ M}-\text{CF}_3-3 \text{ CF}_3\text{C}_6\text{H}_4; \\ 190/80 \text{ CF}_3\text{CN}-2 \text{ F}-\text{C}_6\text{H}_4; \ 172/25 \ 3-\text{CF}_3\text{C}_6\text{H}_4\text{NC}; \ 168/65 \text{ CF}_3\text{CNSi}(\text{CH}_3)_3; \ 145/80 \ 3 \text{ CF}_3\text{C}_8\text{H}_4-; \ 121/25 \ 2 \text{ FC}_6\text{H}_4\text{NC}; \\ 95/60 \ 2 \text{ F}-\text{C}_6\text{H}_4-; \ 77/65 \ C_6\text{H}_5; \ 73/65 \text{ Si}(\text{CH}_3)_3 \text{ und weitere Bruchstücke.} \end{array}$
- $\begin{array}{l} 5 \\ 354/45 \ M; \ 339/25 \ M-CH_{3}; \ 335/10 \ M-F; \ 285/10 \ M-CF_{3}; \ 281/20 \ M-Si(CH_{3})_{3}; \ 280/20 \ M-Si(CH_{3})_{3}-H; \ 262/30 \\ M-Si(CH_{3})_{3}-F; \ 259/50 \ M-2 \ F-C_{6}H_{5}-; \ 244/15 \ M-CH_{3}-2 \ F-C_{6}H_{4}-; \ 219/20 \ M-2 \ CH_{3}-2 \ F-C_{6}H_{4}; \ 212/20 \\ M-CF_{3}-Si(CH_{3})_{3}; \ 193/10 \ M-CF_{3}-Si(CH_{3})_{3}-F; \ 172/20 \ CF_{3}CNC_{6}H_{5}; \ 168/50 \ 2 \ F-C_{6}H_{4}NSi(CH_{3})_{3}-CH_{2}; \ 103/10 \\ C_{6}H_{5}NC; \ 95/25 \ 2 \ F-C_{6}H_{4}-; \ 77/85 \ C_{6}H_{5}; \ 73/100 \ Si(CH_{3})_{3} \ und \ weitere \ Bruchstücke \\ \end{array}$
- $\begin{array}{l} \mathbf{6} & 472/20 \text{ M}; 457/30 \text{ M}-\text{CH}_3; 463/10 \text{ M}-\text{F}; 399/100 \text{ M}-\text{Si}(\text{CH}_3)_8; 388/90 \text{ M}-\text{Si}(\text{CH}_3)_9-\text{H}; 380/45 \text{ M}-\text{Si}(\text{CH}_3)_9-\text{F}; \\ 330/85 \text{ M}-\text{Si}(\text{CH}_3)_9-\text{CF}_3; 311/45 \text{ M}-\text{Si}(\text{CH}_3)_8-\text{CF}_8-\text{F}; 239/90 \text{ M}-3 \text{ CF}_3 \text{C}_8 \text{H}_4-\text{F}-\text{CF}_3; 145/70 \text{ } 3\text{-}\text{CF}_3 \text{C}_8 \text{H}_4; \\ 77/30 \text{ C}_8 \text{H}_5; 73/45 \text{ } \text{Si}(\text{CH}_3)_3 \text{ und weitere Bruchstücke} \end{array}$
- 7 336/50 M; 321/35 M-CH₃; 267/20 M-CF₃; 263/35 M-Si(CH₃)s; 244/30 M-CH₃-C₆H₅; 194/35 M-CF₃-Si(CH₃)s 172/20 CF₃CNC₆H₅; 103/30 C₆H₅NC; 77/90 C₆H₅; 73/100 Si(CH₃)s und weitere Bruchstücke

b) Amidinoborane

- $\begin{array}{ll} 8 & 400/100 \ \ M-B(CH_3)_2 + H; \ 399/75 \ \ M-B(CH_3)_2; \ \ 331/70 \ \ M-B(CH_3)_2 + H-CF_3; \ 240/80 \ \ CF_3C=N-3 \ CF_3C_8H_4; \\ 145/60 \ \ 3 \ \ CF_3-C_6H_4; \ 41/10 \ \ B(CH_3)_2 \ \ und \ weitere \ Bruchstücke \end{array}$
- $9 \quad 307/5 \text{ M}-\text{CH}_{3}; 190/20 \text{ CF}_{3}\text{CN}-2 \text{ FC}_{6}\text{H}_{4}; 172/20 \text{ CF}_{3}\text{CNC}_{6}\text{H}_{6}; 121/10 \text{ 2 F}-\text{C}_{6}\text{H}_{4}\text{NC}; 77/100 \text{ C}_{6}\text{H}_{5}; 69/15 \text{ CF}_{3} \text{ und weitere Bruchstücke}$
- 10 $346/30 \text{ M}; 331/40 \text{ M}-\text{CH}_3; 306/100 \text{ M}-\text{B}(\text{CH}_3)_2 + \text{H}; 305/25 \text{ M}-\text{B}(\text{CH}_3)_2; 287/50 \text{ M}-\text{N}(\text{CH}_3)_2 + \text{H}-\text{F}; 237/40 \text{ M}-\text{B}(\text{CH}_3)_2 + \text{H}-\text{CF}_3; 214/80 \text{ CF}_3\text{CN}-2, 4, 6 (\text{CH}_3)_3\text{C}_4\text{H}_4; 145/70 2, 4, 6 (\text{CH}_3)_3\text{C}_6\text{H}_2\text{NC}; 119/50 2, 4, 6 (\text{CH}_3)_3\text{C}_4\text{H}_2; 77/70 \text{ C}_6\text{H}_3; 41/70 \text{ B}(\text{CH}_3)_2 \text{ und weitere Bruchstücke}$
- 15 446/50 M; 445/50 M-H; 427/55 M-F; 426/50 M-F-H; 377/15 M-CF₃; 357/30 M-CF₃-F-H; 351/30 M-2 F-C₆H₄; 350/70 M-B[N(CH₃)-CH₂]₂ + H; 349/50 M-B[N(CH₃)-CH₂-]₂; 336/90 M-CH₃-2 F-C₆H₄; 335/70 M-2 F-C₆H₄-CH₃-H; 331/80 M-F + H-B[N(CH₃)-CH₂-]₂; 281/60 M + H-B[N(CH₃)-CH₂-]₂ -CF₃; 240/50 CF₃-C=N-3 CF₃C₆H₄; 171/20 3 CF₃C₆H₄NC; 145/80 3 CF₃-C₆H₄; 121/20 2 F-C₆H₄NC; 95/80 CF₃CN; 69/60 CF₃ und weitere Bruchstücke

e) Trimethylsilylaminoalkylamidine

- **26** $359/5 \text{ M}; 344/5 \text{ M}-\text{CH}_3; 286/20 \text{ M}-\text{Si}(\text{CH}_3)_3; 229/100 \text{ M}-\text{NCH}_3-\text{Si}(\text{CH}_3)_3-\text{CH}_2\text{CH}_2; 217/80 \text{ M}-\text{CF}_3-\text{Si}(\text{CH}_3)_3; 202/85 \text{ M}-\text{CF}_3-\text{Si}(\text{CH}_3)_3-\text{CH}_3; 200/95 \text{ CF}_3\text{CN}-2, 6(\text{CH}_3)_2\text{C}_6\text{H}_3; 168/70 \text{ CF}_3\text{CNSi}(\text{CH}_3)_3; 131/90 2, 6(\text{CH}_3)_2\text{C}_6\text{H}_3\text{NC}; 130/100 (\text{CH}_3)_3\text{Si}(\text{CH}_3)\text{NCH}_2\text{CH}_2; 116/100 \text{ CH}_3-\text{N}(\text{CH}_3-)\text{Si}(\text{CH}_3)_3; 103/60 \text{ C}_6\text{H}_5\text{NC}; 77/80 \text{ C}_6\text{H}_5; 73/95 \text{ C}_6\text{H}_5 \text{ nnd} weitere Bruchstücke$
- 27 399/15 M; 384/5 M CH₃; 380/5 M F; 379/5 M CH₃ F H; 330/30 M CF₃; 297/15 M (CH₃)NSi(CH₃)₃; 283/30 M (CH₃)[Si(CH₃)₃]N CH₂ ; 269/5 M (CH₃)[Si(CH₃)₃]N CH₂ CH₂; 257/30 M CF₃ Si(CH₃)₃; 256/25 M CF₃ Si(CH₃)₅ H; 240/40 CF₃CN 3 CF₃C₈H₄; 172/60 CF₅CNC₆H₅; 168/80 CF₃CNSi(CH₃)₃; 145/60 3 CF₃C₆H₄; 130/80 CH₃[Si(CH₃)₃]NCH₂CH₂; 116/100 CH₃[Si(CH₃)₃]NCH₂; 77/70 C₆H₅; 73/80 Si(CH₃)₃ und weitere Bruchstücke

- **29** 331/5 M; 316/5 M-CH₃; 262/60 M-CF₃; 229/10 M-CH₃-N-Si(CH₃)₅; 201/20 M-(CH₃)[Si(CH₃)₃]NCH₂CH₂; 189/50 M-CF₃-Si(CH₃)₃; 164/25 M-CF₃-Si(CH₃)₃-CH₅; 172/65 CF₃CNC₆H₅; 168/100 CF₃CNSi(CH₃)₃; 130/30 M-Si(CH₃)₃-CH₃CH₂; 129/85 CH₃[Si(CH₃)₅]NCH₂CH₂-H; 116/100 CH₃-[Si(CH₃)₅]N-CH₂; 77/85 C₆H₅; 73/80 Si(CH₃)₃ und weitere Bruchstücke
- 30 359/5 M; 344/5 M-CH₃; 257/10 M-(CH₃)₃SiNCH₃; 229/25 M-(CH₃)₃Si-N(CH₃)-CH₂CH₂; 217/60 M-CF₃-Si(CH₃)₅; 200/40 CF₃CN-2,4 (CH₃)₂C₆H₃; 168/100 CF₃CNSi(CH₃)₅; 131/75,2 2,4 (CH₃)₂C₆H₃NC; 130/100 (CH₃) [Si(CH₃)₃]NCH₂CH₂; 116/100 (CH₃)[Si(CH₃)₃]NCH₂; 77/70 C₆H₃; 73/85 Si(CH₃)₃ und weitere Bruchstücke
- d) Dimethyl-aminoalkylamidinoboran 32
- 32 $312/5 \text{ M-CH}_{3}$; 293/10 M-F-CH_{3} ; 230/80 CF₃-(NHCH₃)C=N-2,6 (CH₃)₂C₆H₅; 215/30 CF₃-(NHCH₃)CN-2,6 (CH₃)₂C₆H₃+CH₃; 106/100 2,6 (CH₃)₂C₆H₄; 105/40 2,6 (CH₃)₂C₆H₃; 103/30 C₆H₅NC; 77/80 C₆H₅; 69/15 CF₂; 41/40 B(CH₃)₂ und weitere Bruchstücke

Tabelle 7 Präparative und analytische Daten der Silylamidine 1-7, 24, 26-31 und der Amidinoborane 8-23 und 32-40

Verb.	Sdp. °C/mbar	Summenformel	MG	Analyse: gef. (20 C	ber.) % H	07 N	Ausb. %
1	120/2 • 10-3	CH.»N.F.Si	364.1	62 75 (62 62)	6.31 (6.32)	7.36 (7.69)	75
2	$132/2 \cdot 10^{-3}$	CarHarNaFaSi	378.1	63 57 (63 48)	641(661)	7 57 (7 41)	75
3	106/2 • 10-3	C.H.N.F.Si	404.1	54.11(53.45)	4.58 (4.45)	7 11 (6.93)	80
4	111/2 · 10-3	C.H.N.F.Si	422.1	51.54 (51.17)	4.00 (4.03)	6.86 (6.63)	85
5	98/2 · 10-3	C.H.N.F.Si	354.1	58.05 (57.61)	5.04 (5.08)	8.07 (7.91)	90
6	$106/2 \cdot 10^{-3}$	C.H.N.F.Si	472.1	48.38 (48.29)	3.63 (3.60)	6.01 (5.93)	85
7	$100/2 \cdot 10^{-3}$	CuHuN FaSi	336.1	60.78 (60.70)	5.52 (5.65)	8.36 (8.33)	90
8	8386/2 · 10-3	C.H.BF.N.	439.8	48.73 (49.11)	3.19(3.18)	6.48 (6.37)	80
9	$71 - 75/2 \cdot 10^{-3}$	C.H.BF.N.	321.8	59.21 (59.70)	4.46 (4.60)	8.72 (8.70)	80
10	$115 - 118/2 \cdot 10^{-2}$	C.H.BF.N.	345.8	65.56 (65.93)	6.27 (6.36)	8.20 (8.10)	85
11	74/2 · 10-3	C.H.BF.N.	389.8	52.27 (52.33)	3.61(3.59)	7.33 (7.18)	90
12	$100 - 102/2 \cdot 10^{-3}$	CiaHaBFaNa	331.8	64.76 (65.10)	6.03 (6.03)	8.22 (8.4)	80
13	$140 - 145/2 \cdot 10^{-3}$	C.H.BF.N.	469.8	70.46 (74.07)	5,63 (5,53)	6.01 (5.96)	80
14	200/0 7	C.H.BEN.	359.8	60 25 (58 09)	55.9 (5.56)	15 68 (15.56)	80
15	$102 - 104/2 \cdot 10^{-2}$	C1.H.BF.N.	445.8	51.30 (51.14)	4.10 (4.04)	12.69 (12.56)	80
16	$102 - 103/2 \cdot 10^{-3}$	C.H.BE.N.	377.8	58.37 (57.17)	5.21(5.03)	13.55 (14.82)	80
17	$125 - 135/2 \cdot 10^{-3}$	C.H.BF.N.	389.8	61.30 (61.57)	6.38 (6.67)		80
18	130/0 15	C.H.BF.N.	446.8	51.91 (51.03)	4.53(4.25)	12.20(12.53)	80
19	$130 - 135/2 \cdot 10^{-3}$	C.H. BF.N.	475.8	57.75 (58.00)	3.41(2.94)	8.69 (8.83)	90
20	$130 - 135/2 \cdot 10^{-3}$	C.H.BF.N.	379.9	57.03 (56.87)	5.61(5.53)	14.48 (14.74)	80
21	$115 - 120/2 \cdot 10^{-3}$	CarHarBFaNa	421.8	65.91 (68.27)	5.94 (5.93)	9.38 (9.96)	80
22	$120/2 \cdot 10^{-3}$	CasHasBF-N.	503.8	54.85 (54.78)	5.65 (6.56)	11.04 (11.11)	80
23	$135/2 \cdot 10^{-3}$	Ca.H. BFAN	412.8	64.03 (63.95)	4.94 (4.84)	10.01 (10.17)	80
24	$105/2 \cdot 10^{-3}$	C. H.SiN.	268.1	71.66 (71.61)	7.49 (7.46)	10.64 (10.44)	90
25	$150/2 \cdot 10^{-2}$	C.H.BN.	235.8	76.45 (76.33)	7.56 (7.21)	11.86 (11.87)	80
26	$110/2 \cdot 10^{-3}$	C.H.F.N.Si	359.1	58.76 (56.90)	7.67 (7.80)	12.94 (11.70)	90
27	$94 - 97/2 \cdot 10^{-3}$	C. H. F.N.Si	399.1	48.56 (48.11)	5.92 (5.76)	10.70 (10.52)	90
28	$96 - 98/2 \cdot 10^{-3}$	C. H. F. N.Si	349.1	51.95 (51.56)	6.70 (6.59)	12.70 (12.03)	90
29	$93 - 97/2 \cdot 10^{-3}$	C.H.F.N.Si	331.1	55.91 (54.40)	7.01 (7.26)	13.64 (12.68)	90
30	$110 - 112/2 \cdot 10^{-3}$	C1.HasFaNaSi	359.1	57.10 (56.90)	7.76 (7.80)	12.01 (11.70)	90
31	$90 - 93/2 \cdot 10^{-3}$	C1.H.,F.N.Si	387.1	48.39 (48.20)	5.43 (5.75)	10.74 (10.50)	90
32	$90 - 95/2 \cdot 10^{-3}$	C. H. BFaNa	326.8	57.59 (58.75)	7.29 (7.65)	12.16 (12.85)	75
33	$95 - 98/2 \cdot 10^{-3}$	C. H. BF.N.	384.8	56.27 (56.13)	8.05 (8.06)	13.65 (18.19)	75
34	$110 - 115/2 \cdot 10^{-3}$	C.,Hs.BF3N.	440.8	60,91 (59.89)	9,39 (8,85)	15,76 (15,88)	75
35	$115/2 \cdot 10^{-3}$	C., H3. BFaN.	417.8	64.93 (63.19)	7.19 (7.18)	13,07 (13,40)	75
36	$97 - 100/2 \cdot 10^{-3}$	C1.H.BFaN.	382.8	56,65 (56,43)	8,23 (7,57)	18,58 (18,28)	75
37	$114 - 117/2 \cdot 10^{-3}$	C12HasBFaNs	424,8	48,21 (48,02)	6,13 (6,12)	16,45 (16,47)	75
38	$104 - 108/2 \cdot 10^{-3}$	C12Ha4BFaN.	422,8	48,30 (48,25)	6,27 (5,67)	16,90 (16,56)	85
39	$98 - 100/2 \cdot 10^{-3}$	C1. HarBF3N.	356,8	53,95 (53,81)	8,02 (7,57)	20,12 (19,62)	80
40	$104 - 106/2 \cdot 10^{-3}$	$C_{19}H_{38}BF_{3}N_{5}$	398,8	57,65 (57,17)	8,12 (8,28)	17,04 (17,52)	80

Lösungsmittel am Rotationsverdampfer abgezogen und der flüssige Anteil des verbliebenen Rückstandes am Hochvakuum in eine Kühlfalle gesaugt und anschließend destilliert.

Darstellung von 8-23, 25 und 32-40. Zu 0,05 mol des Silylamidins, gelöst in 400 ml Petroläther, wurden 0,05 mol des Halogendiorganylborans in 100 ml Petroläther zugetropft und 3 h am Rückfluß gekocht. Nach dem Absaugen des Lösungsmittels am Rotationsverdampfer verblieb ein flüssiger Rückstand. Im Falle von 8-13, 25 und 32 wurde dieser destilliert. Für 14-23 und 33-40 zeigte sich, daß die Reaktion nicht vollständig abgelaufen war. Diese Produkte wurden etwa 15 min am Ölbad auf 130-140 °C erhitzt (ohne Lösungsmittel), Trimethylchlorsilan abgesaugt und anschließend destilliert.

Darstellung von 24. 1 mol N, N'-Diphenylformamidin wurde in 1500 ml CCl₄ gelöst, 1 mol Triäthylamin zugesetzt und dann 1 mol Chlortrimethylsilan zugetropft, 8 h am Rückfluß gekocht, das gebildete Triäthylammoniumehlorid in einer Druckfilternutsche unter N_2 abgetrennt, die Lösung am Rotationsverdampfer eingeengt und anschließend destilliert.

Darstellung von 26-31. Zu 0,5 mol N, N'-Dimethyläthylendiamin (gelöst in 750 ml Petroläther) wurden 0,5 mol n-Butyl-lithium in 350 ml n-Hexan zugetropft und 5 h am Rückfluß gekocht. Dann wurden 0,5 mol Chlortrimethylsilan zugetropft und weitere 5 h am Rückfluß gekocht. Hierauf wurden nochmals 0,5 mol n-Butyllithium zugetropft und wieder 5 h gekocht. Anschließend erfolgte die Zugabe des Imidhalogenids 5stündiges Kochen am Rückfluß. Die Aufarbeitung erfolgte analog zu 1-7.

Analysen. Die C-, H- und N-Bestimmungen wurden als Verbrennungsanalysen (Mikro-Pregl bzw. Mikro-Dumas) durchgeführt (Mikroanalytisches Laboratorium Beller, Göttingen).

Alle NMR-Messungen wurden in CH_2Cl_2 durchgeführt. Als Standardsubstanzen wurden TMS (intern), $F_3B \cdot O(C_2H_5)_2$ (extern) und $FCCl_3$ (intern) verwendet. In den Tabellen der NMR-spektroskopischen Daten gibt das positive Vorzeichen durchwegs eine Verschiebung zu geringerem Feld bezogen auf den Standard an.

Die Aufnahme der Massenspektren erfolgte bei 70 eV.

Literatur

- [1] Teil XVI: W. MARINGGELE u. A. MELLER, Monatsh. Chem., im Druck.
- [2] H. KESSLER, Angew. Chem. 82, 237 (1970).
- [3] M. FUKUI, K. ITOH U. Y. ISHII, J. Chem. Soc., Perkin Trans. II 1972, 1043.
- [4] W. MARINGGELE u. A. MELLER, Z. anorg. allg. Chem. 443, 148 (1978).
- [5] Z. RAPPOPORT U. R. TA SHMA, Tetradron Lett. 32, 5281 (1972).
- [6] H. KESSLER, Liebigs Ann. Chem. 708, 57 (1967).
- [7] C. G. MCCARTY, in: The Chemistry of the Carbon-Nitrogen-Double Bond, ed. S. PATAI, Chap. 9, J. Wiley and Sons, New York, 1970.
- [8] P. BAUDET u. D. RAO, Helv. Chim. Acta 53, 1011 (1970).
- [9] M. E. RUNNER, M. L. KILPATRICK U. E. C. WAGNER, J. Amer. Chem. Soc. 69, 1406 (1947).
- [10] M. J. COOK, A. R. KATRITZKY U. S. NADJI, J. Chem. Soc. Perkin-Trans. II, 1976, 211.
- [11] G. SCHWENKER u. K. BÖSL, Die Pharmazie 24, 653 (1964).
- [12] A. W. CHAPMAN U. CH. H. PERROTT, J. Chem. Soc. 1932, 1070.
- [13] M. D. PREVORŠEK, J. Chim. Phys. Phys. Chim. Biol. 55, 840 (1958).
- [14] R. L. SHRINER U. F. W. NEUMANN, Chem. Rev. 34, 351 (1944).
- [15] V. A. DOROKHOV, V. I. SEREDENKO U. B. M. MIKHAILOV, Zh. Obshch. Khim. 46, 1057 (1976).
- [16] B. M. MIKHAILOV, Pure Appl. Chem. 49, 749 (1977).
- [17] B. M. MIKHAILOV, V. A. DOROKHOV, V. I. SEREDENKO U. I. P. YAKOVLEV, IZV. Akad. Nauk SSSR, Ser. Khim. 1974, 1665.
- [18] B. M. MIKHAILOV u. V. A. DORKOKHOV, IZV. Akad. Nauk SSSR, Ser. Khim. 1973, 2649.
- [19] H. NÖTH, Z. Naturforsch. 16b, 618 (1961).

Silylamidine und deren Umsetzung mit Boranderivaten

- [20] A. B. BURG u. R. I. KULJIAN, J. Amer. Chem. Soc. 72, 3103 (1950).
- [21] S. SIJUSHI u. S. WITZ, J. Amer. Chem. Soc. 79, 2447 (1957).
- [22] E. A. V. EBSWORTH U. H. J. EMELEUS, J. Chem. Soc. 1958, 2150.
- [23] M. P. BROWN, E. E. DANN, D. W. HUNT u. H. B. SILVER, J. Chem. Soc. 1962, 4648.
- [24] K. NIEDENZU, H. BEYER u. J. W. DAWSON, Inorg. Chem. 1, 738 (1962).
- [25] A. B. BURG u. C. L. RANDOLPH, J. Amer. Chem. Soc. 73, 953 (1951).
- [26] E. WIBERG u. K. SCHUSTER, Z. anorg. allg. Chem. 213, 77 (1933).
- [27] R. L. BROTHERTON, A. L. MCCLOSKEY, L. L. PETTERSON U. H. STEINBERG, J. Amer. Chem. Soc. 82, 6242 (1960).
- [28] H. NÖTH u. W. LUKAS, Chem. Ber. 95, 1505 (1962).
- [29] J. GOUBEAU, M. RAHTZ U. H. J. BECHER, Z. anorg. allg. Chem. 275, 161 (1964).
- [30] H. NÖTH, V. A. DOROKHOV u. F. PFAB, Z. anorg. allg. Chem. 318, 293 (1962).
- [31] A. FINCH, P. J. GARDNER, E. J. PEARN U. G. W. WATTS, Trans. Faraday Soc. 63, 1880 (1967
- [32] J. E. BURCH, W. GERRARD, M. HOWARTH U. E. F. MOONEY, J. Chem. Soc. 1960, 4916.
- [33] H. KORSCHING, Z. Naturforsch. 1, 219 (1946).
- [34] G. J. M. VAN DER KERK U. I. G. A. LUIJTEN, Org. Synth. 4, 881 (1963).
- [35] E. W. ABEL, S. H. DANGEGAONKER, W. GERRARD U. M. F. LAPPERT, J. Chem. Soc. 1956, 4697.
- [36] W. MARINGGELE u. A. MELLER, Z. anorg. allg. Chem. 433, 94 (1977).

Bei der Redaktion eingegangen am 18. März 1978.

Anschr. d. Verf.: Dr. Walter Maringgele und Prof. Dr. Anton Meller, Anorg.-Chem. Inst. d. Univ., Tammannstraße 4, D-3400 Göttingen