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Introduction

Let F be a field, and let Σn be the symmetric group on n letters. In this paper
we address the following question: given two irreducible FΣn-modules D1 and D2 of
dimensions greater than 1, can it happen that D1 ⊗D2 is irreducible? The answer is
known to be ‘no’ if charF = 0 [12] (see also [2] for some generalizations). So we
assume from now on that F has positive characteristic p. The following conjecture
was made in [4].

Conjecture. Let D1 and D2 be two irreducible FΣn-modules of dimensions
greater than 1. Then D1 ⊗ D2 is irreducible if and only if p = 2, n = 2 + 4l for
some positive integer l, one of the modules corresponds to the partition (2l + 2, 2l)
and the other corresponds to a partition of the form (n − 2j − 1, 2j + 1), 0 6 j < l.
Moreover, in the exceptional cases, one has

D(2l+2,2l) ⊗ D(n−2j−1,2j+1) ∼= D(2l+1−j,2l−j,j+1,j).

The main result of this paper is the following theorem, which establishes a big
part of the conjecture.

Main Theorem. Let Dλ and Dµ be two irreducible FΣn-modules of dimensions
greater than 1. Assume that Dλ ⊗ Dµ is irreducible. Then p = 2, n is even, and if

λ = (λ1 > λ2 > · · · > λr > 0) and µ = (µ1 > µ2 > · · · > µs > 0),

then λ1 ≡ λ2 ≡ · · · ≡ λr (mod 2) or µ1 ≡ µ2 ≡ · · · ≡ µs (mod 2) (or both).

The result is relevant to the problem of describing maximal subgroups in finite
groups of Lie type; compare [1, 8]. We note that for the representations of groups of
Lie type in defining characteristic, the irreducible tensor products are not unusual, in
view of Steinberg’s tensor product theorem. On the other hand, the case of groups
of Lie type in a non-defining characteristic (including characteristic 0) has been
considered recently by Magaard and Tiep [11]. They have shown that in most cases
there are no irreducible tensor products.

In the case of the alternating groups, we note that even in characteristic 0
there are (infinitely many) examples of (non-trivial) irreducible tensor products for
alternating groups; however, all of them are described [2].
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Finally, we note that the case p = 2 seems to be very interesting, because it is
really exceptional. For example, it was observed in [4] that in this case one has

D(4l+1,1) ⊗ D(2l+2,2l) ∼= D(2l+1,2l,1) and D(7,3) ⊗ D(6,4) ∼= D(4,3,2,1)

(see Section 1 for notation). We refer the reader to [4] for further results on tensor
products in characteristic 2, and the relations with the symplectic group.

1. Preliminary results

If G is a group, D1, . . . , Dk are irreducible and V1, . . . , Vm are arbitrary FG-modules,
then we write M = D1| . . . |Dk if M is a uniserial FG-module with composition factors
D1, . . . , Dk counted from bottom to top, and M ∼ V1| . . . |Vm if M has a filtration
with factors V1, . . . , Vm counted from bottom to top. We denote by 1 = 1G the trivial
FG-module. If M is any FG-module, then the space EndF (M) is an FG-module in
a natural way, and EndFG(M) is the space of G-invariants of EndF (M). We denote
by M∗ the module dual to M.

We refer the reader to [5, 6, 7] for the standard facts and notation of the
representation theory of Σn. In particular, Dλ is the irreducible FΣn-module corre-
sponding to a p-regular partition λ of n. Given any partition µ of n, one associates
to it the Young subgroup Σµ, the Specht module Sµ, the permutation module Mµ,
and the Young module Y µ. For example, Mµ = (1Σµ

)↑Σn . The Young modules can
be characterized as the indecomposable summands of the permutation modules Mµ.
The modules Dλ, Mλ and Y λ are known to be self-dual.

We shall need some information on the submodule structure of the permutation
modules M(n−1,1) and M(n−2,2). The proof of the next three lemmas is obtained by
applying [5, 17.17, 24.15] and the ‘Nakayama Conjecture’ [7, 6.1.21, 2.7.41].

Lemma 1.1. The module M(n−1,1) is isomorphic to D(n−1,1) ⊕ 1 if n 6≡ 0 (mod p),
and M(n−1,1) = 1|D(n−1,1)|1 ∼ 1|(S (n−1,1))∗ otherwise.

Lemma 1.2. Let p > 2 and n > 4.
(i) If n 6≡ 1, 2 (mod p), then M(n−2,2) ∼= Y (n−2,2) ⊕M(n−1,1), where

Y (n−2,2) ∼= S (n−2,2) ∼= D(n−2,2).

(ii) If n ≡ 1 (mod p), then M(n−2,2) ∼= Y (n−2,2) ⊕ D(n−1,1), where

Y (n−2,2) = 1|D(n−2,2)|1 ∼ 1|(S (n−2,2))∗.

(iii) If n ≡ 2 (mod p), then M(n−2,2) ∼= Y (n−2,2) ⊕ 1, where

Y (n−2,2) = D(n−1,1)|D(n−2,2)|D(n−1,1) ∼ D(n−1,1)|(S (n−2,2))∗.

We shall need the corresponding results in the case p = 2 only when n is odd.

Lemma 1.3. Let p = 2, and let n > 4 be odd.
(i) If n ≡ 1 (mod 4), then M(n−2,2) ∼= Y (n−2,2) ⊕ D(n−1,1), where

Y (n−2,2) = 1|D(n−2,2)|1 ∼ 1|(S (n−2,2))∗.

(ii) If n ≡ 3 (mod 4), then M(n−2,2) ∼= Y (n−2,2) ⊕M(n−1,1), where

Y (n−2,2) ∼= D(n−2,2).
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Lemma 1.4. Let n > 4, and assume that n is odd if p = 2. Then M(n−1,1) is a
quotient of M(n−2,2).

Proof. This follows from Lemmas 1.1, 1.2 and 1.3.

Unfortunately, the result of Lemma 1.4 is not true when p = 2 and n is even.
We write Σn−2,2 for the Young subgroup Σ(n−2,2)

∼= Σn−2 ×Σ2. The following two
results from [10] will be crucial.

Theorem 1.5 ([10]). Let p > 2 and n > 4. Assume that V is an FΣn-module such
that the alternating group An < Σn does not act trivially on V . Then

dim EndFΣn−1
(V↓FΣn−1

) < dim EndFΣn−2,2
(V↓FΣn−2,2

).

Let p = 2. If n = 2l is even, then we write S for the irreducible module
D(l+1,l−1), and if n = 2l + 1 is odd, then we write S for D(l+1,l). We call S the spinor
representation of Σn.

Theorem 1.6 ([10]). Let p = 2 and n > 4, and let D be a non-trivial irreducible
FΣn-module. Then

dim EndFΣn−1
(D↓FΣn−1

) < dim EndFΣn−2,2
(D↓FΣn−2,2

)

unless n is odd and D ∼= S is the spinor module.

Corollary 1.7. Let n > 4, and let D be an irreducible FΣn module with dimen-
sion greater than 1. Then

dim HomFΣn
(M(n−2,2),EndF (D)) > dim HomFΣn

(M(n−1,1),EndF (D))

unless n is odd and D ∼= S is the spinor module.

Proof. The corollary follows immediately from Theorems 1.5 and 1.6, and the
isomorphism

HomFΣn
(Mν,EndF (D)) ∼= EndFΣν

(D↓FΣν
),

which comes from the Frobenius reciprocity.

2. Main result

The following technical result turns out to be the key.

Lemma 2.1. Let n > 4, and let D be a simple FΣn-module with dimD > 1. If
p = 2, then assume additionally that n is odd and D 6∼= S . Then either the dual Specht
module (S (n−2,2))∗ or the Young module Y (n−2,2) (or both) is a submodule of EndF (D).

Proof. Assume first that p > 2, n 6≡ 1, 2 (mod p) or p = 2, n ≡ 3 (mod 4).
By Lemmas 1.2(i) and 1.3(ii), we have M(n−2,2) ∼= M(n−1,1) ⊕ D(n−2,2). Moreover,
Y (n−2,2) ∼= (S (n−2,2))∗ ∼= D(n−2,2), and the result follows from Corollary 1.7.

Now let p > 2 and n ≡ 1 (mod p). By Lemma 1.4 and Corollary 1.7, there must
exist a homomorphism θ : M(n−2,2) → EndF (D) which does not factor through the
surjection M(n−2,2) → M(n−1,1). If θ is an injection, then Y (n−2,2) is a submodule of
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EndF (D). Otherwise, in view of Lemma 1.2(ii), the kernel of the restriction θ | Y (n−2,2)

is 1, but Y (n−2,2)/1 ∼= (S (n−2,2))∗.
Finally, the cases p > 2, n ≡ 2 (mod p) and p = 2, n ≡ 1 (mod 4) are considered

similarly to the case n ≡ 1 (mod p) using Lemmas 1.2(iii) and 1.3(i) and Corollary 1.7.

The following result covers a major part of the Main Theorem.

Theorem 2.2. Let Dλ, Dµ be two irreducible FΣn-modules of dimensions greater
than 1. If p = 2, then assume additionally that n is odd. Then Dλ⊗Dµ is not irreducible.

Proof. For n 6 3, the result is trivial since irreducible modules have dimension
at most 2. Assume that n > 4.

If p = 2 and n is odd, then no tensor product of the spinor module S with a
non-trivial irreducible module is irreducible, by [4, 3.1]. So from now on we assume
that Dλ, Dµ 6∼= S .

It is enough to prove that the space

EndFΣn
(Dλ ⊗ Dµ) ∼= HomFΣn

(EndF (Dλ),EndF (Dµ))

has dimension greater than 1.

For any irreducible FΣn-module D, the module EndF (D) is self-dual, with 1Σn

appearing exactly once in its socle and head.

Assume first that p > 2, n 6≡ 1, 2 (mod p) or p = 2, n ≡ 3 (mod 4). Then it follows
from Lemma 2.1 that 1Σn

⊕ D(n−2,2) appears in the socle of EndF (Dµ), as in this
case we have Y (n−2,2) ∼= (S (n−2,2))∗ ∼= D(n−2,2) by Lemmas 1.2 and 1.3 (and we have
assumed that Dµ 6∼= S). As EndF (Dλ) is self-dual, the same argument also shows that
1Σn
⊕ D(n−2,2) appears in the head of EndF (Dλ). Thus

dim HomFΣn
(EndF (Dλ),EndF (Dµ)) > 1.

Set N1 := S (n−2,2) and N2 := Y (n−2,2). By Lemma 2.1, either N∗1 or N2 is a
submodule of EndF (Dµ). By duality, either N1 or N∗2 ∼= N2 is a quotient module of
EndF (Dλ).

Now assume that p > 2 and n ≡ 2 (mod p). By Lemma 1.2(iii), the trivial module
1Σn

is not a composition factor of Ni, i = 1, 2. So a module of the form 1Σn
⊕Ni is

a quotient module of EndF (Dλ), and a module of the form 1Σn
⊕N∗j is a submodule

of EndF (Dµ). However,

dim HomFΣn
(1Σn
⊕Ni, 1Σn

⊕N∗j ) > 1,

for any i, j, which again implies dim HomFΣn
(EndF (Dλ),EndF (Dµ)) > 1.

Next, assume that p > 2, n ≡ 1 (mod p) or p = 2, n ≡ 1 (mod 4). By Lem-
mas 1.2(ii) and 1.3(i), the trivial module 1Σn

is not a submodule of N∗1 . So if N2

is not a submodule of EndF (Dµ), then 1Σn
⊕ N∗1 is. Dually, if N2 is not a quotient

module of EndF (Dλ), then 1Σn
⊕ N1 is. Now the result follows from the fact that

dim HomFΣn
(X,Y ) > 1, where X is N2 or 1Σn

⊕N1, and Y is N2 or 1Σn
⊕N∗1 .

To consider the remaining cases of the Main Theorem, we need the following.

Proposition 2.3. Let Dλ and Dµ be two irreducible FΣn-modules such that the
restrictions Dλ↓FΣn−1

and Dµ↓FΣn−1
are not irreducible. Then Dλ⊗Dµ is not irreducible.
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Proof. First note that dim EndFΣn−1
(Dλ↓FΣn−1

) > 1, since Dλ↓FΣn−1
is reducible

and self-dual. The same is true for Dµ. As

HomFΣn
(M(n−1,1),EndF (D)) ∼= EndFΣn−1

(D↓FΣn−1
),

we conclude that

dim HomFΣn
(M(n−1,1),EndF (D)) > 1 for D = Dλ or Dµ. (∗)

We know that EndF (D) is a self-dual module, and 1Σn
appears in its socle and

head. By Lemma 1.1 and (∗), we have that either M(n−1,1) or (S (n−1,1))∗ is a submodule
of EndF (Dµ), and that either M(n−1,1) or S (n−1,1) is a quotient of EndF (Dλ). Now, as
in the proof of Theorem 2.2, we may conclude that

dim EndFΣn
(Dλ ⊗ Dµ) = dim HomFΣn

(EndF (Dλ),EndF (Dµ)) > 1.

Let p = 2, and let

λ = (λ1 > λ2 > · · · > λr > 0)

be a 2-regular partition. By [9, Theorem D] (or by [3]), the restriction Dλ↓Σn−1
is

irreducible if and only if λ1 ≡ λ2 ≡ · · · ≡ λr (mod 2). Now the Main Theorem follows
from Theorem 2.2 and Proposition 2.3.

References

1. M. Aschbacher, ‘On the maximal subgroups of the finite classical groups’, Invent. Math. 76 (1984)
469–514.

2. C. Bessenrodt and A. Kleshchev, ‘On Kronecker products of irreducible complex representations
of the symmetric and alternating groups’, Pacific J. Math. 190 (1999) 201–223.

3. B. Ford, ‘Irreducible restrictions of representations of the symmetric groups’, Bull. London Math.
Soc. 27 (1995) 453–459.

4. R. Gow and A. Kleshchev, ‘Connections between the representations of the symmetric group and
the symplectic group in characteristic 2’, J. Algebra 221 (1999) 60–89.

5. G. D. James, The representation theory of the symmetric groups, Lecture Notes in Math. 682 (Springer,
Berlin, 1978).

6. G. D. James, ‘The representation theory of the symmetric groups’, Arcata Conference on Represen-
tations of Finite Groups, Proc. Sympos. Pure Math. 47 (Amer. Math. Soc., Providence, RI, 1987)
111–126.

7. G. James and A. Kerber, The representation theory of the symmetric group (Addison-Wesley, London,
1981).

8. P. Kleidman and M. Liebeck, The subgroup structure of the finite classical groups, London Math.
Soc. Lecture Note Ser. 129 (Cambridge University Press, 1990).

9. A. Kleshchev, ‘On restrictions of irreducible modular representations of semisimple algebraic
groups and symmetric groups to some natural subgroups I’, Proc. London Math. Soc. 69 (1994)
515–540.

10. A. S. Kleshchev and J. Sheth, ‘Irreducible subgroups of the symmetric group’, Preprint, University
of Oregon, 1999.

11. K. Magaard and P.-H. Tiep, ‘Irreducible tensor products of representations of quasi-simple finite
groups of Lie type’, Preprint, 1999.

12. I. Zisser, ‘Irreducible products of characters in An’, Israel J. Math. 84 (1993) 147–151.

Fakultät für Mathematik
Otto-von-Guericke-Universität

Magdeburg
D-39016 Magdeburg
Germany

Department of Mathematics
University of Oregon
Eugene, OR 97403
USA


