SHAAGROCKOL B AND C; TWO HEXAPRENYLHYDROQUINONE DISULFATES FROM THE RED SEA SPONGE TOXICLONA TOXIUS

Sara Isaacs and Yoel Kashman*

School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel

Key words: NMR, sponge, hexaprenylhydroquinone, sulfate, antifungal

Abstract: Two hexaprenylhydroquinone derived disulfates, shaagrockol B and C (1 and 2) were isolated from the Red Sea sponge *Toxiclona toxius* (Levi, 1958). The structure of these two new hexaprenoid, antifungal metabolites was determined by spectroscopic methods, mainly 2D-NMR measurements as well as chemical modifications. Ozonolysis of compound 2 afforded compound 1 and the acid catalysed rearrangement of 1, leading to compounds 3 and 4, has been elucidated.

In our continuing search for physiologically active marine metabolites¹ we have isolated from a Red Sea sponge *Toxiclona toxius*, which was collected near Shaag rock in the entrance to the Gulf of Suez, a series of sulfates with antifungal activity. Solvent partitioning of the CH_2Cl_2 -MeOH extract of the sponge concentrated the antifungal activity against *C. albicans* in the aq. MeOH fraction. The subject of this report is the structure of two of these sulfates: Shaagrockol B (1) and Shaagrockol C (2), named after the place of collection.

Compound 2, $[\alpha]_D + 8^\circ$ (c = 0.7, MeOH) v_{max} 3500, 2966, 2948, 1264, 1239, 1039, 864 cm⁻¹, had a molecular formula of $C_{36}H_{54}O_{10}S_2Na_2$ which was established by positive and negative FABMS (m/z 779.4 $[M(Na_2) + Na]^+$, 733.1 $[M(Na_2)-Na]^-$ confirmed by the addition of K⁺ to give 827.2 $[M(K_2)+K]^+$ and 749.1 $[M(K_2)-K]^-$) and the ¹³C-NMR spectrum. The carbon spectrum of 2 showed well resolved resonances for all 36 carbon atoms in the molecule (see Table 1) and a DEPT experiment indicated that 53 hydrogen atoms were bonded to carbons (7xCH₃, 13xCH₂, 6xCH). Furthermore, the ¹³C-NMR spectrum suggested a three substituted phenyl group, a tetrasubstituted

Furthermore, the ¹³C-NMR spectrum suggested a three substituted phenyl group, a tetrasubstituted double bond bearing one of the methyls (δ_{H} 1.49), a tert. alcohol which could be eliminated, vide infra (δ_{C} 79.8), and an ethereal bridge (δ_{C} 76.1 & 74.4). According to the 9 degrees of unsaturation of 2 it required in addition to the above functionalities three carbocyclic rings. The acid sensitivity of the two sulfates (1% TFA in MeOH), and the ¹H and ¹³C chemical shifts of the aromatic ring² (Table 1) proposed for 2 a 2-alkylated hydroquinone disulfate moiety. This moiety was confirmed and expanded by a series of COSY and TOCSY experiments to a CHCH₂CH₂C(CH₃)=CCH₂-C₆H₃(OSO₃Na)₂ unit. The latter experiments together with a HMQC experiment (which established all thirteen geminal methylene pairs) also proposed a -OCHCH₂CH₂CH(CH₃)- and two -(CH₂)₃- units. Most of the information, which ultimately led to the total planar structure of shaagrockol-C, came from two HMBC experiments (J_{CH}=8 and 4 Hz) summarized in Table 1. It was established that the alicyclic portions of compound 2 consist of two bicyclic ring systems; a *trans*-decalin and a *cis*-fused cyclohexane-oxepane system which are linked via an ethylene bridge. The stercochemistry of the chiral centers (Figure) was determined mainly by NOE's³ and, for the decalin portion, also by comparison with a model compound⁴.

The relative stereochemistry of the two halves of the molecule, which are separated by a flexible ethylene bridge, has to be established. The decalin of 2 resembles siphonodictyol H^4 , while the second bicyclic part resembles in part sipholenol⁵.

Compound 1, $[\alpha]_D + 4^\circ$ (c = 0.5, MeOH), v_{max} 3500, 2958, 2929, 1714, 1263, 1234, 1043, 852 cm⁻¹, was obtained as an amorphous powder of molecular formula $C_{36}H_{54}O_{12}S_2Na_2$ (FABMS, m/z 811.3 [M(Na₂)+Na]⁴ 789.0 [M(Na₂)+H]⁺, 767.0 [M(NaH)+H]⁺ and 765.0 [M(Na₂)-Na]⁻). On the basis of careful analysis of the ¹H and ¹³C²NMR spectra, (Table 1) shaagrockol B has been determined to have the same hydroquinone disulfate and cis-cyclohexane-oxepane units as in 2 and to differ from the latter compound in the decalin part. That is, the absence of the 19(20) double bond, the existence of two carbonyls (δ_{C} 215.0s & 212.0s), one of which is a part of a methyl ketone ($\delta_{\rm H}$ 2.06s), and in the down-field shift of the benzyl protons (H₂-31). This shift of the two 31-protons, from δ 3.45d, 3.57d in 2 to δ 4.06d, 4.16d in 1, suggested this pair to be adjacent to one of the two carbony groups.

Mild acid hydrolysis, 1% TFA in abs. MeOH at rt., aimed to remove the two sulfate groups, surprisingly resulted, not only in the disappearance of these two groups, but also of the two carbonyls. In both compounds 3 and 4^{6} , that were obtained during the hydrolysis of 1, the carbonyl-carbon signals disappeared and the CH₃CO singlet at δ_{H} 2.06s was replaced by a signal at δ_{H} 1.66s. Significant changes were also observed in the aromatic region of the NMR spectra⁶. The difference between compounds 3 and 4was in the cyclohexane-oxepane unit: whereas in 3 this site remained intact, in 4 the 11-OH group was eliminated bringing about a 1,2-shift of Me-24 to C-11 and the formation of a 1(2) double bond. Eventually, the total planar structure determination of 1 was achieved from two HMBC experiments (with the emphasis on CH-coupling constants of 8 and 4 Hz).

Comparison of shaagrockol B and C pointed clearly to the close relationship between the two, namely, that shaagrockol B is the oxidative cleavage product of the 19(20) double bond of shaagrockol C. And, indeed, reductive ozonolysis of 2 (-20°C, MeOH, Me₂S) afforded compound 1.

Compound 4

Compound 2					Compound 1							
C#	¹³ C	1 H	COSY		нмво	2	¹³ C	1 _H	COSY		нмвс	
•	•			J ₂	J	J ₄				2 _J	3 ₁	4 _J
1	42.1s	-		-	5	-	42.3s			•	-	-
2a	39.7t	1.97m	3a,3b	1,3	4		39.5t	1.94m	2b,3a,3b		11	
2Ъ		1.54m	2a,3a,3b		4,7,11		10.0	1.55m	3a,3b	3	5,11	
3a	20.0t	1.78m	3b,4a,				19.90	1./0m	2a, 2b, 4a, 4b	2	4	
3h		1.52m	40					1.50m	74,70	2	4	26
4a	44.6t	1.62m	4b				44.41	1.66m	4b	5	25.2	
4b		1.49m		5,3	26,2			1.45m		5,3	25,26,2	
5	76.1s	-			• • •		76.0s	-	o o:			A.F.
7	74.4d	3.71d	8a,8b	1	5,11	25	74.25	3.74d	Ba, BD	1	11,5	25
8a er	25.51	2.00m	80,92,90 0° 05	1			25.51	1.28m	80,90			
00 00	24 St	2.02m	9a,90 9h 10 27				24.7t	1.98m	9b			
9b	4.JL	1.14m	10					1.15m		10		1
10	37.6d	1.58m	27	11		7	37.7d	1.60m	27			
11	79.8s	-					79.7s	-				
12a	28.0ı	1.61m	12b,13a,13	3Ъ			27.4t	1.63m	126	10		
126	25.1+	1.14m	13a,13b				27.61	1.10m	138	10		
13h	25.11	1.30m 1.12m	28				27.00	1.12m	150			
14	37.9s	-	20				38.3s	-				
15a	37.4t	1.65m	15b,17b		23,17		37.41	1.65m	15b			
15b		1.02m	16a,28	16				1.02m				
16a	20.0t	1.52m	16a,17a,				19.4t	1.52m		18		
166		1.28m	170					1.26m				
17a	38.2t	1.74m	17b.15b.	18			37.4t	1.74m				
17b	50.21	0.91m	,,					1.02m				
18	40.2s	-					54.0s	-				
19	138.4s	-					215.0s	-				
20	130.5s	-	211.20	20.22	10.22		212.0s	-	216 220	20		
21a	34.81	2.21m	210,30	20,22	19,23		40.11	2.39m	210,22a, 22b	20		
			31a.31b						220			
21b		2.08m	31a,31b	20,22	19,23			2.44m	22a,22b	20		
22a	20.1t	1.76m	226,23	21,23	18,20		21.8t	1.76m	22a			
22ь		1.62m	23	21	18			1.36m		18		
23	55.6d	1.36dd	29	18	21,13		49.9d	1.96	22a,22b	22,14	18	
*24	24.20	1 190		,	29,15	10.12	24.60	1 18e		1	11	3
*25	24.54 24.54	1.105		5	4.26	10,12	24.10	1.20s		•	26	5
26	32.20	1.14s		5	4,25		32.2q	1.15s		5	25,4	
27	17.2q	1.06d		10	9	1	17.2q	1.09d		10	9	12
28	29.4q	0.91s		14	23,13,		28.4q	0.91s		14	23,15	18,16
<u> </u>	01.2-	1.06.		10	10.22		20.40	1 300		18	10.23	17
29	21.3q	1.00s		20	19,25		30.00	2.06s		20	21	17
31a	28.5	3.57d	31b	19.32	18.20.3	3	40.1t	4.16d	31b	19,32	33	37,29
31b		3.45d		19,32	18,20			4.06d		19,32	33	37,29
32	136.5s	-		-			131.1s	-				
33	148.8s	-		~~			149.0s	-	25			
34	123.0d	7.34d	35	33	36,32		125.40	1.380	33			
33	119.70	.1.090d	31				121.30	1.1700	1			
36	150.9s	•		26	A 1 A A A	~	150.3s	-				
21	123.40	1.030		30	31,33,3	2	125.3d	7.12d				

Table 1: NMR Data of Compounds 1 and 2 (CD₃OD, 125 MHz and 500 MHz)

a,b a-the low field and b-the high field protons in a geminal pair. * interchangeable signals c $J_{7/8a8b} = 3$, $J_{23/22a,22b} = 1.5$, 12.5, $J_{27/10} = 7.5 J_{31a/31b} = 18$, $J_{34/35} = 9$, $J_{35/34,37} = 9$, 2.5, $J_{37/35} = 2.5$ d $J_{7/8a,8b} = 3$, $J_{27/10} = 7.5$, $J_{31a/31b} = 18$, $J_{34/35} = 9$, $J_{35/34,37} = 9$, 2.5, $J_{37/35} = 2.5$

,

2230

The structure of 1 readily explained the route leading to 3 and 4 by the TFA-acid, that is, formation of a lactol between one of the free hydrolysed phenols and C(20)=O, followed by a second lactol formation between the intermediate 20-OH and C(19)=O and finally elimination of the 19-OH to afford the conjugated 19(31) enol ether, (in 4, in addition, as explained above, the other half of the molecule changed also).

Interestingly, from the biogenetic point of view, was the isolation of the earlier reported 2-tetraprenylhydroquinone⁷ (from the less polar fractions of the sponge), as the higher homologue the 2-hexaprenvlhydroquinone⁸ is assumed to be the precursor of the shaagrockols.

Cyclisations of tetra and pentaprenylhydroquinones, in sponges, to give in a single cyclisation process of the entire aliphatic chain, penta or hexacyclic molecules have earlier been reported 9,10. In the shaagrockols, however, two cyclisation reactions are involved, one leading to the benzvl decalin unit which resembles siphonodiction H^4 , and the other to the cyclohexane-oxepane system which is similar (although *cis* and not *trans* fused) to this part in the sipholanes².

Shaagrockols B and C were found to be responsible for the antifungal activity ($IC_{50}=6\mu g/ml$), the structure of additional sulfates is on going.

Acknowledgments: We wish to thank W.H. de Weerdt for the identification of the sponge, Professor A. Mandelbaum, the MS Center at the Technion, Israel, for the mass spectra, Mrs. Y. Abudi for her technical assistance and Dr. P. McCarthy, H.B.O.I., Florida, for the antifungal test.

References and Notes

- Kashman, Y.; Hirsch, S.; McConnell, O.J.; Ohtani, I.; Kusumi, T.; Kakisawa, H. J. Am. Chem. Soc., 1. 111. 8925 (1989).
- Ragan, M.A. Can. J. Chem., 56, 2681 (1978) and Petsch et al, "Table of Spectral Data for Structure 2. Determination of Organic Compounds", Springer-Verlag, Berlin, 1983. NOE's were observed between H-7 and H-3b, 8a, 8b and either Me-24 or 25 (overlapping signals). The
- 3 latter NOE's together with the equatorial configuration of H-7 (t, J=3 Hz) agree with the suggested cis ring juction. In addition, the absence of a NOE between Me-24 (axial) and 27 proposed an equatorial Me-27 group. Although a NOE between Me-24 and H-10ax could also be observed it was not unequivocal because of overlapping of H-10ax with H-4a. The tentative stereochemistry at C-11 (see Figure) is proposed on the basis of the preferred equatorial position of the ethylene bridge and the clean rearrangement leading to 4 (elimination of the axial H-11 and a 1,2-shift of the axial Me-24). The following NOE's were measured for the decalin portion: Me-28 to 22a, 23; Me-30 to H-31b; and Me-29 to H-16a, 21 and 22b.
- Sullivan, B.W.; Faulkner, D.J. J. Org. Chem., 51, 4568 (1986). 4.
- 5.
- Sullivan, B.W.; Faulkner, D.J. J. Org. Chem., 51, 4568 (1986). Shmueli, U.; Carmely, S.; Groweiss, A.; Kashman, Y. Tet. Letters 22, 709 (1981). 4, C₃₆H₅₂O₄ (HREIMS 548.3894, mmu 2.8) V_{max} 3050, 2984, 1417, 1261, 900 cm⁻¹, ¹H NMR (CDCl₃) δ_{H} 4.11 (t, J=3, H-7), 0.96 (s, Me-24), 1.17 (s, Me-25), 1.25 (s, Me-26), 0.84 (d, J=7.5, Me-27) 0.88 (s, Me-28), 1.35 (s, Me-29), 1.66 (s, Me-30), 6.30 (s, H-31), 7.26 (d, J=8, H-34), 6.67 (dd, J=8, 2.5, H-35), 6.81 (d, J=2.5, H-37); ¹³C NMR, δ_{C} 146.9s (C-1), 123.6d (C-2), 74.0s (C-5), 70.8d (C-7), 42.5s (C-11), 168.2s (C-19), 101.6d (C-31), 129.6s (C-32). 149.0s (C-33), 111.2d (C-34), 111.8d (C-35), 151.3s (C-36), 105.5d (C-37). The following NOE's fully supported the suggested structure, NOE's between H-23 and Me-28, between H-31 and H-37 and Me-29 and between 6 Me-30 and H-34.

Compound 3, has the formula C36H54O5 (m/z 566.3, M⁺), its NMR data were, as for the cyclohexane-oxepane unit, identical with those of compounds 1 and 2, while for the rest of the molecule they were the same as for this part in compound 4.

- Cimino, G.; De Stefano, S.; Minale, L. Experimentia 28, 1401 (1972). 7.
- Fusetani, N.; Sugano, M.; Matsunaga, S.; Hashimoto, K.; Shikama, H.; Ohta, A.; Nagano, H. 8a. Experimenta, 43, 1233 (1987).
- 8b. Cimino, G.; De Stefano, S.; Minale, L. Tet. 28, 1315 (1972).
- Salva, J.; Faulkner, D.J. J. Org. Chem., 55, 1941 (1990). 9.
- Cimino, G.; De Stafano, S.; Minale, L.; Riccio, R.; Hirtosu, K.; Clardy, J. Tet. Letters, 38, 10. 3619 (1979).

(Received in UK 21 January 1992)