INVESTIGATIONS IN THE FIELD OF N-ARYL-\beta-AMINO ACIDS

V. HYDRAZIDES OF N-ARYL-β-ALANINES

Z. F. Solomko, M. S. Malinovskii, and V. T. Braichenko

UDC 615.281:547.466.23

A series of works [1-4] has been devoted to the study of hydrazides of amino acids. Hydrazides of glycine, serine, and other amino acids possess bactericidal properties and display a high activity against staphylococci and streptococci bacteria [5, 6].

Hydrazides of β -amino acids are studied less. In this research hydrazides of N-aryl- β -alanines (I) were obtained from methyl esters of β -arylaminopropionic acids (Table 1). Hydrazides (I) were transformed into dihydrochlorides and into hydrazones (II) (Table 2). The dihydrochlorides are also formed upon reaction of hydrazones of acetone [(II), R=R'=CH₃] with hydrogen chloride. The main hydrolysis products of hydrazides (I) in basic medium are β -arylaminopropionic acids. An attempt to convert hydrazides (I) by the usual method [7] into 1,3,4-oxadiazoles (III) was not successful: N¹=(N-phenyl- β -alanyl)-N²-benzoylhydrazine was obtained under the indicated conditions. Cyclic products (III) were obtained from the hydrochlorides of methyl imino esters of (I).

Examinations carried out at the Ordzhonikidze All-Union Scientific-Research Institute of Pharmaceutical Chemistry showed that dihydrochlorides of hydrazides of N-phenyl-, N-p-tolyl-, N-m-tolyl-, and N-p-methoxyphenyl- β -alanine in a dilution of 1:8000 possess weak bacteriostatic activity in relation to acid-resisting bacteria, while the hydrazide of N-o-tolyl- β -alanine possesses germistatic activity in relation to the majority of the examined microorganisms.

EXPERIMENTAL

Hydrazides of N-Aryl- β -Alanines (I). We dissolved 0.01 mole of the methyl ester of (I) in 10 ml of alcohol and added a twofold excess of 25% hydrazine hydrate. The mixture was heated for 1 h with boiling of the alcohol and maintained for 12 h; the alcohol was distilled in vacuum until a dry residue was obtained, which was washed with ether, dried, and recrystallized from the appropriate solvent (see Table 1).

N-Phenyl- β -Alanine. We heated 1 g of (I) (X=H) for 3 h with a 10% solution of potassium hydroxide, neutralized the mixture with hydrochloric acid, extracted the mixture with ether, and obtained N-phenyl- β -alanine in 90% yield, mp 57-58° (from chloroform with petroleum ether) [8].

 N^{1} -(N-Aryl- β -Alanyl)-N²-Isopropylidenehydrazines [(II), R=R'=CH₃]. We boiled 0.01 mole of (I) for 30 min with 30 ml of dry acetone, distilled the acetone, and recrystallized the solid residue from a small amount of acetone (see Table 2).

Dihydrochlorides of Hydrazides (I). a. We dissolved 1 g of hydrazide (I) with 1.5 ml of hydrochloric acid, maintained the mixture for 24 h in a vacuum desiccator, and recrystallized the product from alcohol.

b. To absolute ethanol saturated with dry hydrogen chloride was added (II) $(R = R^{\dagger} = CH_3)$ and the mixture was stirred until solution. The salt precipitates upon standing.

Dnepropetrovsk State University. Translated from Khimiko-Farmatsevticheskii Zhurnal, Vol. 5, No. 11, pp. 18-21, November, 1971. Original article submitted February 18, 1970.

© 1972 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York, N. Y. 10011. All rights reserved. This article cannot be reproduced for any purpose whatsoever without permission of the publisher. A copy of this article is available from the publisher for \$15.00.

TABLE 1. Hydrazides of N-Aryl- β -Alanines

3H ₂ C NHMH ₂	
S-NHCH ₂ C	I

							Díhyd	Dihydrochlorides		transport of the state of the s
×	Yield, %		Mp (deg) Found N, %		Calc. 'N, %	1	found, %	1, %	calc	calc., %
	•					mp (deg)	z	CI	z	CI
H	0,66	94—95	23,10	C ₉ H ₁₃ N ₃ O	23,40	191—192	16,64	27,71	16,60	28,16
p-CH ₃ O	82,0	126-127	20,28	C ₁₀ H ₁₅ N ₃ O ₂	50,09	. 185—186	14,90	24,50 24,50	14,88	25,17
pCH ₃	9,08	135—136	21,40	$C_{10}H_{15}N_3O$	21,70	202—203	15,38	26,60 26,20	15,79	56,69
m-CH3	67,3	115-116	21,55	$C_{10}H_{15}N_{3}O$	21,70	204—205	15,68 15,50	26,60 26,32	15,79	26,69
o-CH ₃	72,4	129-130	22,00	C ₁₀ H ₁₅ N ₃ O	21,70	206—207	15,80	26,53 26,47	15,79	56,69
p-Cl	0,66	176—177		C ₉ H ₁₂ CIN ₃ O	19,67	192—193	14,90 14,70	36,50 36,65	14,65	36,84
o-NO.	0,06	103—104		$C_9H_{12}N_4O_3$	25,00			1	1	1
p-NO ₂	0,06	147—148		C ₉ H ₁₂ N ₄ O ₃	25,00	1	}	-	i	I
$2-NH_2$, $4NO_2$	81,00	162—163	28,90 28,72	$C_9H_{13}N_5O_3$	29,28	-]		1	ŀ
									_	

TABLE 2. Hydrazones

х	R	R'	Yield, %	Mp (deg)	Found, N.%	Empirical formula	Calc., N, %
Н	CH ₃	CH ₃	90,00	124—125	19,10 19,40	C ₁₂ H ₁₇ N ₃ O	19,17
P-CH ₃	CH ₃	CH ₃	92,0	78—79	18,00 17,67	C ₁₃ H ₁₉ N ₃ O	18,02
p-CH ₃	CH ₃	CH ₃	89,5	118—119	17,98 17,88	C ₁₃ H ₁₉ N ₃ O	18,02
m-CH ₃	CH ₃	CH ₃	90,5	99100	17,95 18,22	C ₁₃ H ₁₉ N ₃ O	18,02
p-Cl	CH ₃	CH ₃	98,0	126—127	16,87	$C_{12}H_{16}CIN_3O$	16,50
p-CH ₃ O	СНз	CH ₃	95,5	107108	16,72 16,55	$C_{13}H_{19}N_3O_2$	16,80
o-NO ₂ H P-CH ₃ o-CH ₃ p-CH ₃ O o-NO ₂	CH ₃ H H H H H	CH ₃ C ₆ H ₂ N (CH ₃) ₂ ·P C ₆ H ₄ N (CH ₃) ₂ ·P C ₆ H ₄ N (CH ₃) ₂ ·P C ₆ H ₄ N (CH ₃) ₂ ·P C ₆ H ₄ N (CH ₃) ₂ ·P	98,0 84,0 98,0 98,0 95,0 93,0	148—149 172—173 164—165 155—156 166—167 160—161	21,00 18,48 17,03 16,98 16,34 20,74	$\begin{array}{c} C_{12}H_{16}N_4O_3\\ C_{18}H_{22}N_4O\\ C_{19}H_{24}N_4O\\ C_{19}H_{24}N_4O\\ C_{19}H_{24}N_4O\\ C_{19}H_{24}N_4O_2\\ C_{18}H_{21}N_5O_3 \end{array}$	21,20 18,06 17,30 17,30 16,46 20,30

 N^1 -(N-Aryl- β -alanyl)- N^2 -(p-dimethylaminobenzylidene)hydrazines [II, R=H, R'=C $_6$ H $_4$ N(CH $_3$) $_2$ =p]. We dissolved 0.01 mole of (I) and 0.012 mole of p-dimethylaminobenzaldehyde in 50 ml of ethanol, acidified the mixture to pH 4.0 with acetic acid, and boiled it for 1 h. The solution was filtered and water was added to it. During this a precipitate appears.

 N^1 -(N-Phenyl- β -alanyl)- N^2 -benzoylhydrazine. We dissolved 0.01 mole of (I) (X=H) in dry pyridine and added dropwise with stirring 0.01 mole of benzoyl chloride. The reaction mass was stirred for 40 min and poured into cold water; the precipitate was filtered and washed with water and alcohol until absence of a pyridine odor. Yield 60%, mp 225-226° (from alcohol). Found %: C 67.52; H 5.82; N 14.87. $C_6H_{17}N_3O_2$. Calculated %: C 67.80; H 6.00; N 14.84.

 $\frac{2-(\text{N-o-Tolyl-}\beta-\text{aminoethyl})-5-\text{phenyl-1,3,4-oxadiazole (IIIa).}}{\text{zide and 0.03 mole of the hydrochloride of the methyl imino ester of o-toluidinopropionic acid in 20 ml of dry pyridine was heated for 2 h and after cooling the reaction mass was poured into water. The precipitate was filtered, dried, and recrystallized from alcohol. Yield 53.7%, mp 135-136°. Found %: C 73.38; H 6.09; N 15.18. <math>C_{17}H_{17}N_3O$. Calculated %: C 73.11; H 6.00; N 15.05.

 $\frac{2-(\text{N-m-Tolyl-}\beta-\text{aminoethyl})-5-\text{phenyl-1,3,4-oxadiazole (IIIb).}}{\text{to (IIIa) from 0.03 mole of benzhydrazide and 0.033 mole of the hydrochloride of the methyl imino ester of m-toluidinopropionic acid. Yield 70.7%, mp 88-89°. Found %: C 73.11; H 6.09; N 15.3. <math>C_{17}H_{17}N_3O$. Calculated %: C 73.11; H 6.00; N 15.05.

LITERATURE CITED

- 1. L. B. Rodina, N. M. Khvorova, and Z. V. Pushkareva, Zh. Obshch. Khim., 34, 2140 (1964).
- 2. N. M. Khvorova, Z. V. Pushkareva, and L. B. Rodina, Zh. Obshch. Khim., 34, 1409 (1964).
- 3. S. Yamada, T. Shiciri, and T. Haya, Chem. Pharm. Bull., 13, 88 (1965); Ref. Zh. Khim., No. 11, 566 (1966).
- 4. C. C. Finger, D. R. Dikerson, L. D. Starr, et al., J. Med. Chem., 8, 405 (1965).
- 5. E. P. Nesynov and A. P. Grekov, Usp. Khim., 33, 98 (1964).