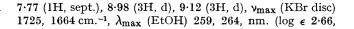
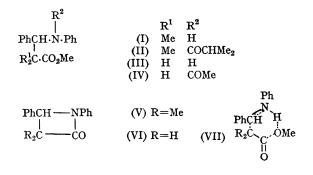
CHEMICAL COMMUNICATIONS, 1969

The Reaction of Ketens with Imines in Methanol

By S. A. PROCTER


(Dept. of Pure and Applied Science, Doncaster College of Technology)


and P. D. ENGLISH and G. A. TAYLOR* (Dept. of Chemistry, University of Sheffield S3 7HF)

Summary Benzylideneaniline reacts with dimethylketen in methanol to give (I) and a small amount of (II).

THE cycloaddition reaction of ketens with imines has recently been shown to proceed *via* zwitterionic intermediates.¹ One technique used in the investigation has been to trap the zwitterions by quenching a partly completed reaction with methanol or water. We have examined the reaction of ketens with imines using methanol as the solvent and in these circumstances a totally different reaction is observed.

Treatment of a methanolic solution of benzylideneaniline with dimethylketen gave two products, identified as (I) (51%), m.p. 121°, τ (CDCl₃) 2·6—3·7 (10H, m), 5·22 (1H, broad signal), 5·51 (1H, s), 6·40 (3H, s), 8·75 (3H, s), 8·85 (3H, s), ν_{max} (CHCl₃) 3425, (KBr disc) 1717 cm.⁻¹, λ_{max} (EtOH) 247, 296 nm. (log ϵ 4·16, 3·29), and (II) (5%), m.p. 107°, τ (CDCl₃) 2·5—3·7 (10H, m), 3·88 (1H, s), 6·35 (3H, s),

2.54). The latter is a minor product clearly arising by acylation of the former by an excess of dimethylketen. A

similar reaction of keten with methanolic benzylideneaniline at 0° gives (III) and (IV).

The mild conditions of the reaction preclude the intermediate formation and solvolysis of the β -lactams. In the reaction of dimethylketen, (V) cannot be detected in the reaction mixture by t.l.c., and it seems unlikely that the keten cycloadduct (VI) would be formed.² Formation of

(I) and (III) could plausibly be explained by a cyclic process involving a transition state like (VII), reaction occurring between a molecule of the keten and a hydrogenbonded methanol-imine complex. Similar cyclic processes have been shown to occur in the reaction of ketens with alcohols,3 amines,4 and carboxylic acids.5

(Received, June 23rd, 1969; Com. 901.)

¹ R. Huisgen, B. A. Davis, and M. Morikawa, Angew. Chem. Internat. Edn., 1968, 7, 826; H. B. Kagan and J. L. Luche, Tetrahedron Letters, 1968, 3093; W. T. Brady and E. D. Dorsey, Chem. Comm., 1968, 1638.

² H. Staudinger, Ber., 1917, **50**, 1035.
³ A. Tille and H. Pracejus, Chem. Ber., 1967, **100**, 196; P. J. Lillford and D. P. N. Satchell, J. Chem. Soc. (B), 1968, 889.
⁴ P. J. Lillford and D. P. N. Satchell, J. Chem. Soc. (B), 1968, 54.
⁵ J. M. Briody, P. J. Lillford, and D. P. N. Satchell, J. Chem. Soc. (B), 1968, 885.