In a similar manner, the reaction of diazonitrone (VI) with PhCOOH gave 4-benzoyloxymethyl-2,2,5,5-tetramethyl-3-imidazoline-3-oxide-1-oxyl (VIII) as an oil in 45% yield. Infrared spectrum (CHCl₃, ν , cm⁻¹): 1730 (C=0), 1610, 1590. Ultraviolet spectrum (λ_{max} , nm): 236 (log ε 4.29). EPR spectrum: triplet with α_N = 14.0 Oe. Found: N 9.79%. C₁₅H₁₉-N₂O₄. Calculated: N 9.62%.

CONCLUSIONS

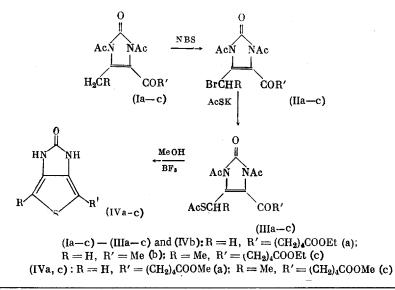
1. The oxidation of the 4-formyl- and 4-acetyl-1-hydroxy-2,2,5,5-tetramethyl-3-imida zoline hydraxones with either MnO_2 or NiO_2 gives the 4,4,6,6-tetramethyl- and 3,4,4,6,6-pentamethyl-4,5,6,6a-tetrahydroimidazo[1,5-c][1,2,3]triazole-5-oxyls.

2. The oxidation of 1-hydroxy-2,2,5,5-tetramethyl-3-imidazoline-3-oxide hydrazone leads to 4-diazomethyl-2,2,5,5-tetramethyl-3-imidazoline-3-oxide-1-oxyl, which is capable of alkylating carboxylic acids.

LITERATURE CITED

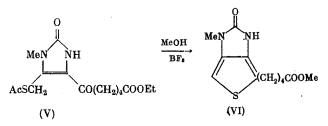
- 1. I. A. Grigor'ev and L. B. Volodarskii, Zh. Org. Khim., <u>10</u>, 118 (1974).
- 2. I. A. Grigor'ev and L. B. Volodarskii, Zh. Org. Khim., 11, 1328 (1975).
- 3. Yu. P. Kitaev and B. I. Buzykin, Hydrazones [in Russian], Nauka (1974), p. 325.
- 4. S. Mineo, S. Kawamura, and K. Nakagawa, Synth. Commun., 6, 69 (1976).
- 5. R. F. S. Brown, L. Subranhmanyan, and C. P. Whittle, Austral. J. Chem., 20, 339 (1967).

6. T. L. Gilchrist and G. E. Gymer, Advan. Heterocycl. Chem., 16, 64 (1974).

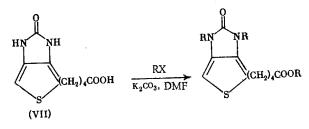

SYNTHESES OF 2-OXO-2, 3-DIHYDRO-1H-THIENO-

[3,4-d]IMIDAZOLE DERIVATIVES

S. I. Zav'yalov and O. V. Dorofeeva


UDC 542.91:547.781

Previously the bromination of the ethyl ester of 1,3-diacetyl-4-methyl-5-(α -keto- ε carbethoxyamyl)imidazolin-2-one (Ia) [1] with N-bromosuccinimide (NBS) in CCl₄, and subsequent reaction of the intermediate bromide (IIa) with AcSK, gave thioacetate (IIIa), which under the influence of MeOH and BF₃ etherate underwent deacetylation, cyclization, and transesterification to give 2-oxo-2,3-dihydro-4-(δ -carbomethoxybutyl)-1H-thieno[3,4-d]imidazole (IVa) [2]. In order to ascertain the applicability limits of a new method for the synthesis of the dihydrothienoimidazole (DTI) system in the present paper, starting with the corres-



N. D. Zelinskii Institute of Organic Chemistry, Academy of Sciences of the USSR, Moscow. Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 1 pp. 225-227, January, 1979. Original article submitted May 25, 1978. ponding imidazolin-2-ones, we studied the synthesis of DTI derivatives with substituents in the 1,3,4 and 6 positions. The bromination of 1,3,5-triacetyl-4-methylimidazolin-2-one (Ib) and 1,3-diacetyl-4-ethyl-5-(α -keto- ϵ -carbethoxyamyl)imidazolin-2-one (Ic) using NBS gave bromides (IIb, c), which react with AcSK in acetone to give thioacetates (IIIb, c). The reaction of the latter with MeOH and BF₃ etherate respectively gave the 4-methyl- and 4-methl-6-(δ -carbomethoxybutyl)-2-oxo-2,3-dihydro-1H-thieno[3,4-d]imidazoles (IVb, c).

To insert a substituent in the l position of the DTI system we used the previously synthesized l-methyl-4-(α -keto- ε -carbethoxyamyl)-5-(acetylmercaptomethyl)imidazolin-2-one (V) [3]. As the result of deacetylation, transesterification, and cyclization, the reaction of (V) with MeOH and BF₃ etherate gave 2-oxo-2,3-dihydro-3-methyl-6-(δ -carbomethoxy-butyl)-1H-thieno[3,4-d]imidazole (VI).

The above-described method proved to be unsuitable for the synthesis of 1,3-dialkylsubstituted DTI due to the unavailability of the corresponding 4-acylimidazolin-2-one derivatives. The insertion of alkyl substituents in the 1 and 3 positions of the DTI system could be accomplished by the direct alkylation of 2-oxo-2,3-dihydro-4-(δ -carboxybutyl)-1H-thieno[3,4-d]imidazole (VII) [3]. Exhaustive alkylation occurred when (VII) was treated with either excess MeI or PhCH₂Cl in DMF, in the presence of K₂CO₃, to give the corresponding esters (VIII) and (IX).

X = Cl, I; R = Me (VIII); $R = CH_2Ph$ (IX)

The insertion of three substituents into (VII) follows from the elemental analysis and PMR spectra, while the location of two of the substituents on the N atoms is in agreement with the IR spectral data, where strong bands of ureido carbonyl are present at 1710 cm^{-1} .

EXPERIMENTAL

The UV spectra (λ_{max}) were taken in alcohol solution on a Specord UV-VIS instrument, the IR spectra were taken as KBr pellets on a UR-20 spectrometer, the PMR spectra were taken in C₅D₅N solution on a DA-60-IL instrument (internal standard = HMDS), and the TLC was run on Silufol UV-254 (ethyl acetate (EA), detection of the spots with I₂ vapors and in UV light).

<u>1,3,5-Triacetyl-4-methylimidazolin-2-one (Ib)</u>. A mixture of 1 g of 4-methyl-5-acetylimidazolin-2-one [4] in 10 ml of Ac₂O was refluxed for 2 h, evaporated in vacuo, the residue was treated with 5 ml of Ac₂O, the mixture was refluxed for another 2 h, evaporated again in vacuo, the residue was treated with alcohol, and the precipitate was washed with alcohol and dried in the air to give 1.12 g (73%) of (Ib), mp 68-69°C (from alcohol), R_f 0.46. Ultraviolet spectrum: 273 nm. Found: C 53.60; H 5.46; N 12.48%. C₁₀H₁₂N₂O₄. Calculated: C 53.60; H 5.36; N 12.50%.

<u>1,3,5-Triacety1-4-(bromomethy1)imidazolin-2-one (IIb)</u>. A mixture of 2 g (0.0089 mole) of (Ib) and 1.59 g (0.0089 mole) of NBS in 10 ml of CC14 was heated for 2 h at 95° (bath temperature), cooled to $\sim 20^{\circ}$, the filtrate was evaporated in vacuo, and the residual bromide (IIb) (2.5 g, oil, Rf 0.86) was used as such in the next step.

 $\frac{1,3,5-\text{Triacetyl-4-(acetylmercaptomethyl)imidazolin-2-one (IIIb).}{\text{g (0.0075 mole) of (IIb) in 5 ml of acetone was gradually added a solution of AcSK (from 0.63 g (0.011 mole) of KOH and 1.09 g (0.016 mole) of AcSH in 2 ml of water), the mixture was stirred for another hour at ~20°, and then it was evaporated in vacuo. The residue was treated with water, and the precipitate was washed with water and dried in the air to give 1.42 g (66%) of (IIIb), mp 110-112° (from alcohol), Rf 0.80. Ultraviolet spectrum: 271 nm. PMR spectrum (<math>\delta$, ppm): 2.08 s (CH₃COS), 2.28 s (CH₃COC=C); 2.50 s and 2.52 s (2CH₃CON), 4.02 s (CH₂S). Found: C 48.34; H 4.66; S 10.62%. C₁₂H₁₄N₂O₅S. Calculated: C 48.50; H 4.70; S 10.62%.

 $\frac{2-0\text{xo}-2,3-\text{dihydro}-4-\text{methyl}-1\text{H}-\text{thieno}[3,4-d]\text{imidazole (IVb)}. A mixture of 1 g of (IIIb) and 3 ml of BF₃ etherate in 6 ml of MeOH was kept for 100 h at ~20°, evaporated in vacuo, and the residue was treated with excess aqueous Na₂CO₃ solution and extracted with EA. The extract was dried over MgSO₄, evaporated in vacuo, and the residue was chromatographed on a SiO₂ column. Elution with EA gave 0.21 g (39%) of (IVb), mp 212-214° (from alcohol), Rf 0.32. Ultraviolet spectrum: 260 nm. Infrared spectrum (<math>\nu$, cm⁻¹): 1700 (C=O), 2800-3400 (CH, NH). PMR spectrum (δ , ppm): 2.01 s (CH₃), 6.00 s (HC-C), 11.26 s (2 NH). Found: C 46.47; H 3.78; S 20.32%. C₆H₆N₂OS. Calculated: C 46.66; H 3.90; S 20.40%. The value given in [3] for the UV spectrum of (IVa) is 262 nm.

 $1,3-Diacetyl-4-ethyl-5-(\alpha-keto-\epsilon-carbethoxyamyl)imidazolin-2-one (Ic).$ The treatment of 0.8 g of 4-ethyl-5-(α -keto- ϵ -carbethoxyamyl)imidazolin-2-one [5] with Ac₂O as described above gave 0.95 g (90%) of (Ic) (oil, R_f 0.84). The compound and those described below were used as such in the next steps.

 $\frac{1,3-\text{Diacetyl}-4-(\alpha-\text{bromoethyl})-5-(\alpha-\text{keto}-\varepsilon-\text{carbethoxyamyl})\text{imidazolin}-2-\text{one (IIc)}.$ Similar to (IIb), the bromination of 0.95 g (0.0026 mole) of (Ic) with 0.6 g (0.003 mole) of NBS in 10 ml of CCl₄ gave 1.14 g (98%) of (IIc) as an oil with R_f 0.72.

 $\frac{1,3-\text{Diacetyl}-4-(\alpha-\text{acetylmercaptoethyl})-5-(\alpha-\text{keto}-\varepsilon-\text{carbethoxyamyl})\text{ imidazolin}-2-\text{one}}{(\text{IIIc})}.$ With stirring, to 1.14 g (0.0026 mole) of (IIc) in 5 ml of acetone was gradually added a solution of AcSK (from 0.5 g (0.0089 mole) of KOH and 1 ml (0.014 mole) of AcSH in 2 ml of water), the mixture was stirred for another hour at 20°, evaporated in vacuo, and the residue was treated with water and extracted with EA. The extract was dried over MgSO₄ and evaporated in vacuo to give 0.85 g (74%) of (IIIc) as an oil with Rf 0.42 (1:1 EA-ben-zene).

 $\frac{2-0\text{xo}-2,3-\text{dihydro}-4-\text{methyl}-6-(\delta-\text{carbomethoxybutyl})-1\text{H-thieno}[3,4-d]\text{imidazole} (IVc).}{\text{Similar to (IVb), the treatment of 0.85 g of (IIIc) in 6 ml of MeOH with 3 ml of BF₃ etherate gave 0.2 g (38%) of (IVc), mp 155-157° (from alcohol), R_f 0.40. Ultraviolet spectrum: 260 nm. Infrared spectrum (<math>\nu$, cm⁻¹): 1700 (C=0), 1730 (COOMe), 2800-3400 (CH, NH). PMR spectrum δ , ppm): 1.45 m (CH₂CH₂), 2.05 m (CH₃C=C, CH₂COOCH₃), 2.70 m (CH₂C=C), 3.35 s (CH₃O), 11.11 s (2NH). Found: C 53.78; H 6.10; N 10.40; S 11.92%. C₁₂H₁₆N₂O₃S. Calculated: C 53.70; H 5.99; N 10.44; S 11.90%.

 $\frac{2-0\text{xo}-2,3-\text{dihydro}-3-\text{methyl}-6-(\delta-\text{carbmethoxybutyl})-1\text{H-thieno}[3,4-d]\text{imidazole (VI)}.$ Similar to the above, the treatment of 1 g of 1-methyl-4-(α -keto- ε -carbethoxyamyl)-5-(acetyl-mercaptomethyl)imidazolin-2-one (V) in 6 ml of MeOH with 3 ml of BF₃ etherate gave 0.66 g (85%) of (VI), mp 92-93°, R_f 0.56. Ultraviolet spectrum: 260 nm. Infrared spectrum (ν , cm⁻¹): 1700 (C=O), 1730 (COOMe), 2800-3400 (CH, NH). PMR spectrum (δ , ppm): 1.40 m (CH₂CH₂), 2.00 m (CH₂COOMe), 2.44 m (CH₂C=C), 2.93 s (MeN), 3.28 s (MeO), 6.10 s (HC=C). Found: C 53.47; H 6.22; N 10.03; S 12.29%. C₁₂H₁₆N₂O₃S. Calculated: C 53.60; H 6.21; N 10.04; S 12.40%.

 $\frac{1,3-\text{Dimethyl}-2-\text{oxo}-2,3-\text{dihydro}-4-(\delta-\text{carbomethoxybutyl})\text{thieno}[3,4-d]\text{imidazole (VIII)}.}{\text{periodic stirring, a mixture of 1.2 g (0.0048 mole) of 2-oxo-2,3-dihydro-4-(\delta-\text{carboxybutyl})-1H-thieno[3,4-d]\text{imidazole (VII)}[3], 3 ml (0.048 mole) of MeI, and 4 g (0.029 mole) of dry, finely ground K_2CO_3 in 10 ml of dry DMF was kept for 360 h at 20°, after which it was diluted with water and extracted with EA. The extract was dried over MgSO_4, evaporated, and the residue was chromatographed on a SiO_2 column. Elution with a 1:4 EA-benzene mixture gave 0.56 g (40%) of (VIII) as an oil with Rf 0.64 (1:4 EA-benzene). Ultraviolet spectrum: 260 nm. Infrared spectrum (v, cm⁻¹): 1710 (C=0), 1730 (COOMe), 2800-3400 (CH, NH). PMR spectrum (\delta, ppm): 1.51 m (CH_2CH_2), 2.10 m (CH_2COOMe), 2.60 m (CH_2C=C), 3.00 s (MeN), 3.11 s (MeN), 3.43 s (MeO), 6.03 s (HC=C).$

1,3-Dibenzy1-2-oxo-2,3-dihydro-4-(δ-carbobenzyloxybuty1)thieno[3,4-d]imidazole (IX). Similar to the above, the treatment of 0.5 g (0.002 mole) of (VII) in 10 ml of DMF with 2.5 ml (0.021 mole) of PhCH₂Cl and 4 g (0.029 mole) of K₂CO₃ gave 0.36 g (35%) of (IX), mp 62-64° (from alcohol), R_f 0.37 (1:1 EA-benzene). Ultraviolet spectrum: 260 nm. Infrared spectrum (ν , cm⁻¹): 1710 (C=0), 1730 (COOCH₂Ph), 2800-3400 (CH, NH). PMR spectrum (δ , ppm): 1.27 m (CH₂CH₂), 2.03 m (CH₂COOCH₂Ph), 2.35 m (CH₂C=C), 4.76 s (2PhCH₂N), 5.01 s (PhCH₂0), 6.05 s (HC=C), 7.36-7.48 (3C₆H₅). Found: C 72.53; H 5.55; N 5.31; S 5.78%. C₃₁H₃₀N₂O₃S. Calculated: C 72.50; H 5.80; N 5.50; S 6.23%.

CONCLUSIONS

1. The reaction of N-substituted 4-acyl-5-(α -acetylmercaptoalkyl)imidazolin-2-ones with methanol in the presence of BF_3 etherate leads to 2-oxo-2,3-dihydro-1H-thieno[2,3-d]imidazole derivatives.

2. The alkylation of $2-\infty-2$, $3-dihydro-4-(\delta-carboxybuty1)-1H-thieno[3, 4-d]imidazole$ with either excess methyl iodide or benzyl chloride proceeds at the carboxyl group and both of the nitrogen atoms.

LITERATURE CITED

R. Duschinsky and L. A. Dolan, J. Am. Chem. Soc., 70, 657 (1948). 1.

- S. I. Zav'yalov, N. A. Rodionova, and O. V. Dorofeeva, Izv. Akad. Nauk SSSR, Ser. Khim., 2. 1975, 1679, 2829.
- S. I. Zav'yalov, I. A. Rubtsov, L. L. Zheleznaya, A. B. Pavlova, and N. A. Rodionova, 3. Izv. Akad. Nauk SSSR, Ser. Khim., <u>1973</u>, 1679. R. Duschinsky and L. A. Dolan, J. Am. Chem. Soc., <u>67</u>, 2079 (1945).

4.

R. Duschinsky and L. A. Dolan, J. Am. Chem. Soc., 68, 2350 (1946). 5.