Interaction of Z-1,2-borylphosphinoalkene with ketenimine

A. S. Balueva,^{a*} E. R. Mustakimov,^a G. N. Nikonov,^a Yu. T. Struchkov,^{b†} A. P. Pisarevsky,^b and R. R. Musin^b

^aA. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan' Scientific Center of the Russian Academy of Sciences, 8 ul. Akad. Arbuzova, 420083 Kazan', Russian Federation.

Fax: +7 (843 2) 75 2253

^bA. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences,

28 ul. Vavilova, 117813 Moscow, Russian Federation.

Fax: +7 (095) 135 5085

N-Phenyl-*C*, *C*-diphenylketenimine adds to *Z*-1-butyl-1-dibutylboryl-2-diphenyl-phosphino-2-phenylethene to give 2,2,3-tributyl-6-diphenylmethylideno-1,4,5,5-tetraphenyl-1-aza-5-phosphonia-2-boratacyclohex-3-ene, which rearranges into 4,6-dibutyl-2-diphenylphosphino-1,1,3,5-tetraphenyl-3-aza-4-boradeca-1,5-diene upon heating. Its crystal structure has been established by X-ray analysis.

Key words: Z-1,2-borylphosphinoalkene; *N*-phenyl-*C*,*C*-diphenylketenimine; 4,6-dibu-tyl-2-diphenylphosphino-1,1,3,5-tetraphenyl-3-aza-4-boradeca-1,5-diene, X-ray analysis.

In continuation of our series of studies on the interaction of Z-1,2-borylphosphinoalkenes with heterocumulenes¹⁻³ we have investigated the reaction of 1-butyl-1-dibutylboryl-2-diphenylphosphino-2-phenylethene (1) with N-phenyl-C,C-diphenylketenimine. On the basis of data previously obtained,¹⁻³ one could expect ketenimine to enter into the [4+2]-cycloaddition reaction at the C=N bond, while the [4+2]-cycloaddition product should undergo 1,2-anionotropic migration of the butyl group from the B atom to the α -C atom with the formation of a bicycle.³

Indeed, borylphosphinoethene 1 easily reacts with ketenimine in benzene at 20 °C. An orange crystalline substance 2 is isolated from the reaction mixture. According to elemental analysis it is a 1 : 1 adduct. It is also evidenced by the ratio of the integral intensities of the phenyl and butyl proton signals in the ¹H NMR spectrum of compound 2. Its mass spectra contain a peak with m/z 737, due to the $[M]^+$ ion of the molecule that is a 1 : 1 adduct of borylphosphinoethene and ketenimine. This assignment is proved by a precisely measured value of m/z for the peak in question (737.4330), which is in good agreement with that calculated for its empirical formula $C_{52}H_{57}BNP$ (737.4321). The elemental composition was calculated for the molecular ion containing the most widespread isotopes. The main directions of decomposition of this ion are the elimination of the C_4H_8 molecule or that of the C_4H_9 radical and elimination of the Ph₂C₂NPh molecule, yielding ions with m/z 412 $[M-C_4H_8-Ph_2C_2NPh]^+$ and 411 $[M-C_4H_9-Ph_2C_2NPh]^+$. The subsequent fragmentation of the above ions with elimination of the C_4H_8 molecule or C_4H_9 radical results in ions with m/z 355 and 354; an intense peak of the $[Ph_2C_2NPh]^+$ ion with m/z 269 is also present.

Bands corresponding to vibrations of the P=O and C=N bonds are absent in the IR spectrum of compound 2. There is a band of middle intensity at 1534 cm⁻¹, which might correspond to vibrations of the endocyclic C=C bond, which is characteristic of 1-hetero-5-phosphonia-2-boratacyclohex-3-enes.^{2,3} However, only one signal at 30.6 ppm is observed in the ³¹P NMR spectrum of adduct 2, which is not typical of adducts of borylphosphinoalkenes with heterocumulenes of both 1-hetero-5-phosphonia-2-boratacyclohex-3-ene (-4 to -15 ppm) and 2-aza-4-phosphonia-1-boratabicyclo[3.1.0]hexane (12-4 ppm) series.¹⁻³ For adduct 2 the structure of six-membered cyclic betaine seems to be more likely.

Adduct 2 is thermally unstable: it transforms into a white crystalline substance 3 upon heating its solution in benzene with small quantities of acetonitrile during 1 h. This transformation proceeds much more slowly in pure benzene and is completed in 8 h. As follows from the elemental analysis and ¹H NMR spectroscopy data, compound 3 is a structural isomer of 2; its IR spectrum is similar to the spectrum of 2, however the band at 1534 cm⁻¹, corresponding to vibrations of the C=C bond in the P-C=C-B fragment, is absent; several differences are also observed in 600–1600 cm⁻¹ region. In the ³¹P NMR spectrum of 3 a signal with 5.34 ppm is observed. According to X-ray analysis data, compound 3 is 4,6-dibutyl-2-diphenylphosphino-1,1,3,5-tetraphenyl-3-aza-4-boradeca-1,5-diene. It is likely that its

Translated from Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 183-187, January, 1996.

1066-5285/96/4501-0174 \$15.00 © 1996 Plenum Publishing Corporation

[†] Deceased in 1995.

formation includes the [4+2]-cycloaddition of ketenimine to borylphosphinoethene 1, the rearrangement of the monocyclic betaine 2 into a bicyclic one and decomposition of the phosphonium salt with the opening of the three-membered cycle by cleavage of the $B-CBu_2$ bond (Scheme 1).

The suggested scheme of formation of diene 3 is confirmed by thermolysis of 1.6.6-tributyl-2,4,4,5-tetraphenyl-6-phenylimino-2-aza-4-phosphonia-1-boratabicyclo[3.1.0]hexane (4) — the product of interaction between compound 1 and diphenylcarbodiimide.² The thermolysis of compound 4 proceeds under more severe conditions than the transformation of betaine 2. Thus, diphenyl(N, N'-diphenylformamidino)phosphine (5) was isolated from the reaction mixture upon heating compound 4 in xylene to 130-140 °C for 7 h; its constants and spectral parameters coincide with those reported in literature.⁴ Upon thermolysis of compound 4 with subsequent oxidation of the reaction mixture by hydrogen peroxide in an alkaline medium phosphine oxide $\mathbf{6}$ was isolated, while the residue, according to the mass-spectroscopy measurements, was 2-butyl-1-phenylhexene-1-one (7). These decomposition products indicate to the same way of three-membered ring opening in compound 4 as during the formation of the diene 3 (Scheme 2). It is likely that borylaminomethynephosphine, formed as an intermediate in this case, is less stable towards hydrolysis than compound 3.

Diene 3 is a new representative of a poorly understood class of compounds containing the P–C–N–B fragment.⁵ Despite the presence of three-coordinated P and B atoms, compound 3 in crystalline state is stable in the air and slowly oxidized in solutions. This might be due to its somewhat unusual spatial structure. According to the X-ray data (Fig. 1) the N and B atoms in molecule 3 have a trigonal planar coordination, which is characteristic of aminoboranes. The sums of bond angles are equal to 360° and 359.9°, respectively; the torsion angles C(31)-N(3)-B(4)-C(5), C(2)-N(3)-B(4)-C(5), and C(2)-N(3)-B(4)-C(41) are equal to 9.6°,

9.02°, and -3.0° , respectively; the N-B and B-C bond lengths are usual for compounds of such type. The planes of C(2)=C(1) and C(5)=C(6) bonds are rotated with respect to the plane of the aminoborane fragment by 67.9° and 73.3°, respectively. The diphenylphosphino group has a usual geometry; the P(1)-C(2) bond is somewhat longer than analogous bonds in the dimethyl ester of 2,3-bis(diphenylphosphino)fumaric acid⁶ (1.861 and 1.842 Å, respectively). The molecular conformation is of interest because of the presence of two pairs of "eclipsed" phenyl cycles: the Ph group at the N atom and one of the Ph substituents at the P atom, as well as the second Ph substituent at the P atom and one of the Ph substituents of the methylidene fragment. Short contacts are observed between these phenyl cycles; the distances C(111)-C(31), C(112)-C(31), and C(112)-C(31)C(36) are 3.16, 3.35, and 3.31 Å, and C(121)-C(11)and C(126)-C(16) are 3.10 and 3.31 Å, respectively. The phenyl rings are somewhat shifted with respect to each other; for instance, C(13) atom is almost above the center of the opposite cycle. An analogous position of the approached planar fragments was observed for 5,6-benzo-4-diphenylphosphino-2-phenyl-1,3,2-dioxaborinane⁷ and was explained by a dispersive interaction. In this case two stacking-interactions are realizes in one molecule, which might cause a rapid transformation of the intermediate bicyclic betaine and chemical stability of compound 3.

Thus, as was suggested, the Z-adduct of borylphosphinoethene with ketenimine, owing to the nucleophilic N atom, adjacent to boron, undergoes 1,2-anionotropic migration of the butyl substituent from the B to the C atom. However the rearrangement is not completed at this point and an easy opening of the

Fig. 1. Molecular structure of 4,6-dibutyl-2-diphenylphosphino-1,1,3,5-tetraphenyl-3-aza-4-boradeca-1,5-diene.

three-membered ring results in α -borylaminoalkenylphosphine. This is another of possible directions of the reaction of trialkylboranes with unsaturated compounds,⁸ followed by the cleavage of the B–C bond formed at the first stage.

Experimental

The ³¹P NMR spectra were recorded on a Bruker MSL-400 spectrometer (161 MHz). The ¹H NMR spectra (in DMSO-d₆) were obtained on a Varian T-60 at 34.5 °C (SiMe₄ as an external standard). IR spectra (suspensions in Vaseline oil) were recorded on a Specord M-80 spectrometer. Mass spectra (E1) were obtained on an MKh-1310 instrument with an SM-4 computer (energy of ionizing electrons — 70 eV, electron emission current — 30 μ A, a direct inlet system was used). Precise measurements of the molecular ions' masses were carried out automatically using reference peaks of perfluoro-kerosine.

Compound 4 was obtained using the method described previously.²

2,2,3-Tributyl-6-diphenylmethylideno-1,4,5,5-tetraphenyl-1-aza-5-phosphonia-2-boratacyclohex-3-ene (2). In a solution of 0.5 g (1.07 mmol) of **1** in 2 mL of benzene 0.29 g (1.07 mmol) of *N*-phenyl-*C*,*C*-diphenylketenimine was dissolved with stirring. After ~24 h the solution was evaporated, and the crystals formed were recrystallized from acetonitrile. The yield of compound **2** was 0.55 g (70 %), m.p. 138 °C. Found (%): C, 84.05; H, 8.18; N, 1.97; P, 4.17. $C_{52}H_{57}BNP$. Calculated (%): C, 84.67; H, 7.73; N, 1.90; P, 4.21. IR, v/cm^{-1} : 1534 (C=C). ¹H NMR, δ : 0.37–1.83 (m, 27 H, Bu); 6.30–8.00 (m, 30 H, Ph). ³¹P NMR (C₆H₆), δ : 30.66. MS, m/z (I_{rel} (%)): 737 [M]⁺ (0.58), 681 [M–C₄H₈]⁺ (0.68), 680 [M–C₄H₉]⁺ (0.58), 522 [M–B(C₄H₉)(C₄H₈)NPh]⁺ (1.13), 468 [M–Ph₂C₂NPh]⁺ (1.13), 412 [M–C₄H₈–Ph₂C₂NPh]⁺ (32.29), 411 [M–C₄H₉–Ph₂C₂NPh]⁺ (35.37), 355 [M–C₄H₈–Ph₂C₂NPh]⁺ (11.13), 269 [Ph₂C₂NPh]⁺ (93.36), 186 [Ph₂PH]⁺ (0.59), 185 [Ph₂P]⁺ (2.90), 166 [Ph₂C]⁺ (11.56), 108 [PhP]⁺ (1.63), 91 [PhCH₂]⁺ (0.93), 77 [Ph]⁺ (1.70).

4,6-Dibutyl-2-diphenylphosphino-1,1,3,5-tetraphenyl-3-aza-4-boradeca-1,5-diene (3). A solution of 0.4 g (0.54 mmol) of compound **2** in 10 mL benzene was boiled for 8 h. The benzene was evaporated, and the crystals formed were recrystallized from an acetonitrile–DMFA (1 : 2) mixture. The yield of compound **3** was 0.11 g (27 %), m.p. 139–144 °C. Found (%): C, 84.06; H, 7.99; N, 1.90; P, 3.95. $C_{52}H_{57}BNP$. Calculated (%): C, 84.67; H, 7.73; N, 1.90; P, 4.21. ¹H NMR, δ : 0.49–1.70 (m, 27 H, Bu); 6.17–7.51 (m, 30 H, Ph). ³¹P NMR (C₆H₆), δ : 5.35.

X-ray study of compound 3. The parameters of the unit cells and diffraction intensities of crystal 3 were measured on a Siemens P3/PC four-circle automatic diffractometer (λ (Mo-K α), graphite monochromator, $\theta/2\theta$ -scanning, $2\theta_{max} = 60^{\circ}$) at 298 K. Crystals of compound 3 are colorless prisms, triclinic, a = 1.674(4) Å, b = 12.952(6) Å, c = 15.169(5) Å, $\alpha = 92.93(2)^{\circ}$, $\beta = 99.16(2)^{\circ}$, $\gamma = 93.57^{\circ}$, V = 72255.4(16) Å³, space group P1, Z = 2, $d_{calc} = 1.086$ g cm⁻³.

The structure was solved by direct methods and refined anisotropically for non-hydrogen atoms. The final values of the

Atom	x	у	z	$U_{\rm iso}^{\rm eq}/{\rm Å}^2$	
P(1)	2394(1)	2054(1)	5173(1)	42(1)	
N(3)	2912(3)	2692(3)	7007(3)	37(1)	
B(4)	2943(5)	1922(5)	7655(4)	42(1)	
C(2)	2009(4)	2630(4)	6227(3)	37(1)	
C(5)	3805(5)	2054(4)	8580(3)	43(1)	
C(6)	4752(5)	1530(4)	8781(4)	47(1)	
C(1)	871(5)	2760(4)	6277(4)	43(1)	
$\hat{C}(\hat{\Pi})$	3987(4)	2225(4)	5310(3)	40(1)	
$\dot{C(112)}$	4648(5)	3119(5)	5095(4)	54(1)	
C(113)	5846(6)	3096(6)	5165(5)	78(1)	
C(114)	6407(6)	2238(6)	5459(5)	86(1)	
C(115)	5796(6)	1384(6)	5657(5)	87(1)	
C(116)	4590(6)	1371(5)	5588(4)	68(1)	
C(121)	1959(4)	2957(4)	4324(3)	42(1)	
C(122)	1441(5)	2485(5)	3488(4)	57(1)	
C(123)	1089(6)	3106(6)	2769(4)	73(1)	
C(124)	1213(6)	4130(6)	2888(5)	73(1)	
C(125)	1690(5)	4617(5)	3705(5)	64(1)	
C(126)	2060(5)	4031(5)	4408(4)	52(1)	
C(31)	3752(4)	3570(4)	7059(3)	35(1)	
C(32)	3377(5)	4525(4)	6855(4)	50(1)	
C(33)	4185(6)	5382(5)	6901(5)	63(1)	
C(34)	5369(5)	5262(5)	7175(5)	65(1)	
C(35)	5735(5)	4311(5)	7355(4)	56(1)	
C(36)	4947(4)	3458(4)	7302(3)	41(1)	
C(41)	2041(5)	921(5)	7461(4)	61(1)	
C(42)	1300(7)	692(6)	8172(5)	83(1)	
CIAS	321(7)	-123(7)	7897(6)	107(1)	

Table 1. Coordinates of non-hydrogen atoms (×10⁴) and their thermal parameters ($U_{iso}^{eq} \times 10^{3}$) in structure 3

Table 2. Major bond lengths (d) in structure 3

Bond	d/Å	Bond	d/Å
P(1) - C(2)	1.861(6)	C(33)-C(34)	1.399(9)
P(1) - C(111)	1.836(5)	C(34)-C(35)	1.356(9)
P(1) - C(121)	1.818(6)	C(35)-C(36)	1.383(8)
N(3) - B(4)	1.434(8)	C(41)-C(42)	1.516(11)
N(3) - C(2)	1.450(6)	C(42) - C(43)	1.499(10)
N(3) - C(31)	1.445(6)	C(43)-C(44)	1.465(14)
B(4) - C(5)	1.586(7)	C(51)C(52)	1.421(9)
B(4) - C(41)	1.602(8)	C(51)-C(56)	1.357(8)
C(2) - C(1)	1.362(8)	C(52)-C(53)	1.377(11)
C(5) - C(6)	1.336(8)	C(53)-C(54)	1.337(11)
C(5) - C(51)	1.509(8)	C(54)-C(55)	1.374(12)
C(6) - C(611)	1.539(9)	C(55)-C(56)	1.414(11)
C(6) - C(621)	1.506(8)	C(611)-C(612)	1.461(10)
C(1) - C(11)	1.499(7)	C(612)-C(613)	1.615(15)
C(1) - C(21)	1.513(8)	C(613)-C(614)	1.119(15)

reliability factors: R = 7.56 % and $R_w = 8.46$ % for 3830 reflections with $F^2 \ge 6\sigma(F)$. All calculations were carried out on an IBM PC/AT computer using SHELXTL PLUS software.

The coordinates of non-hydrogen atoms are listed in Table 1, the main bond lengths and angles are given in Tables 2 and 3, respectively. The structure of compound 3 is shown in Fig. 1.

Thermolysis of 1,6,6-tributyl-2,4,4,5-tetraphenyl-3-phenylimino-2-aza-4-phosphonia-1-boratabicyclo[3.1.0]hexane (4).

Atom	<i>x</i>	У	Ζ	$U_{\rm iso}^{\rm eq}/{\rm \AA}^2$	
C(44)	-404(8)	-274(8)	8592(7)	150(1)	
C(51)	3437(5)	2758(4)	9292(4)	47(1)	
C(52)	2781(6)	2352(5)	9925(4)	69(1)	
C(53)	2444(6)	2997(6)	10572(5)	87(1)	
C(54)	2739(6)	4015(6)	10625(5)	91(1)	
C(55)	3376(6)	4445(6)	10032(5)	89(1)	
C(56)	3720(6)	3794(5)	9359(4)	66(1)	
C(611)	5176(6)	837(5)	8062(4)	65(1)	
C(612)	5182(8)	-264(6)	8228(6)	114(1)	
C(613)	5483(9)	-959(8)	7392(8)	190(1)	
C(614)	5409(9)	-1826(9)	7364(9)	292(1)	
C(621)	5520(5)	1590(5)	9682(4)	60(1)	
C(622)	6664(7)	2241(6)	9740(6)	103(1)	
C(623)	7323(9)	2332(8)	10715(8)	187(1)	
C(624)	7926(10)	3028(9)	11065(9)	335(1)	
C(11)	-9(4)	2565(4)	5441(4)	43(1)	
C(12)	-410(5)	1556(4)	5125(4)	52(1)	
C(13)	-1214(5)	1364(5)	4350(5)	68(1)	
C(14)	-1643(6)	2162(6)	3878(5)	76(1)	
C(15)	-1271(5)	3176(5)	4192(5)	69(1)	
C(16)	-490(5)	3350(5)	4978(4)	54(1)	
C(21)	376(5)	3042(4)	7113(4)	44(1)	
C(22)	956(5)	3686(4)	7831(4)	53(1)	
C(23)	446(5)	3881(5)	8586(4)	65(1)	
C(24)	-654(6)	3456(5)	8620(5)	75(1)	
C(25)	-1248(6)	2839(5)	7932(5)	73(1)	
C(26)	-750(5)	2635(5)	7167(4)	59(1)	

Bond	d/Å	Bond	d/Å
C(111)-C(112	2) 1.432(8)	C(621)-C(622)	1.521(10)
C(111) - C(116)	5) 1.395(9)	C(622)-C(623)	1.550(14)
C(112) - C(113)	3) 1.388(9)	C(623)-C(624)	1.159(15)
C(113) - C(114)) 1.382(11)	C(11) - C(12)	1.394(8)
C(114)-C(115	5) 1.352(11)	C(11) - C(16)	1.365(8)
C(115)-C(116	5) 1.395(10)	C(12) - C(13)	1.384(8)
C(121) - C(122)	2) 1.406(8)	C(13) - C(14)	1.364(10
C(122)-C(123	3) 1.412(10)	C(15)-C(16)	1.381(8)
C(123)-C(124	1.325(10)	C(21) - C(22)	1.394(7)
C(124)-C(125	5) 1.378(9)	C(21)-C(26)	1.401(8)
C(125)-C(126	5) 1.371(9)	C(22)-C(23)	1.390(9)
C(31) - C(32)	1.370(8)	C(23)-C(24)	1.375(9)
C(31) - C(36)	1.404(7)	C(24)-C(25)	1.351(9)
C(32) - C(33)	1.403(8)	C(25)-C(26)	1.399(10)

A solution of 1.5 g (2.2 mmol) of compound **4** in 3 mL of *p*-xylene was heated in a sealed ampule at 130–140 °C for 7 h. The reaction mixture was evaporated *in vacuo* at 100 °C, the residue was crystallized from acetonitrile, and the crystals were washed with acetonitrilebenzene mixture (4 : 1). The yield of compound **5** was 0.3 g (35 %), m.p. 131–134 °C. IR, v/cm⁻¹: 3400 (N–H); 1608 (C=N). ³¹P NMR (C₆H₆), δ : –11.7 (cf. Ref. 4).

A solution of 0.6 g of compound 4 in 1.5 mL of *p*-xylene was heated for 7 h in a sealed ampule at 130-140 °C. The

Angle	ω/deg	Angle	ω/deg
C(2) - P(1) - C(111)	105.3(2)	C(32)-C(31)-C(36)	119.5(5)
C(2) - P(1) - C(121)	105.6(3)	C(31) - C(32) - C(33)	120.0(5)
C(111) - P(1) - C(121)	101.8(3)	C(32) - C(33) - C(34)	119.8(6)
B(4) - N(3) - C(2)	121.0(4)	C(33)-C(34)-C(35)	119.9(6)
B(4) - N(3) - C(31)	124.4(4)	C(34) - C(35) - C(36)	120.8(5)
C(2) - N(3) - C(31)	114.6(4)	C(31) - C(36) - C(35)	120.1(5)
N(3) - B(4) - C(5)	121.9(5)	B(4) - C(41) - C(42)	116.9(5)
N(3) - B(4) - C(41)	119.2(4)	C(41) - C(42) - C(43)	115.2(6)
C(5) - B(4) - C(41)	118.8(5)	C(42) - C(43) - C(44)	112.9(7)
P(1)-C(2)-N(3)	116.3(4)	C(5) - C(51) - C(52)	120.8(5)
P(1)-C(2)-C(1)	119.2(4)	C(5) - C(51) - C(56)	121.8(6)
N(3) - C(2) - C(1)	123.0(5)	C(52) - C(51) - C(56)	117.4(6)
B(4) - C(5) - C(6)	124.7(5)	C(51) - C(52) - C(53)	120.6(6)
B(4) - C(5) - C(51)	115.6(5)	C(52)-C(53)-C(54)	120.7(8)
C(6) - C(5) - C(51)	119.4(5)	C(53)-C(54)-C(55)	121.0(8)
C(5) - C(6) - C(611)	120.7(5)	C(54) - C(55) - C(56)	119.0(7)
C(5)-C(6)-C(621)	124.9(5)	C(51) - C(56) - C(55)	121.3(7)
C(611) - C(6) - C(621)	114.4(5)	C(6)-C(611)-C(612)	115.4(6)
C(2) - C(1) - C(11)	118.4(5)	C(611) - C(612) - C(613)	112.6(8)
C(2) - C(1) - C(21)	126.5(5)	C(612)-C(613)-C(614)	122.3(12)
C(11)-C(1)-C(21)	115.1(5)	C(6)-C(621)-C(622)	115.0(6)
P(1)-C(111)-C(112)	125.9(4)	C(621)-C(622)-C(623)	110.3(7)
P(1)-C(111)-C(116)	116.1(4)	C(622)-C(623)-C(624)	127.2(11)
C(112)-C(111)-C(116)	117.8(5)	C(1)-C(11)-C(12)	120.6(5)
C(111)-C(112)-C(113)	119.0(6)	C(1) - C(11) - C(16)	122.3(5)
C(112)-C(113)-C(114)	121.1(7)	C(12) - C(11) - C(16)	116.9(5)
C(113)-C(114)-C(115)	120.7(7)	C(11) - C(12) - C(13)	121.3(6)
C(114) - C(115) - C(116)	120.0(7)	C(12) - C(13) - C(14)	120.5(6)
C(111) - C(116) - C(115)	121.4(6)	C(13) - C(14) - C(15)	119.1(6)
P(1)-C(121)-C(122)	114.5(4)	C(14) - C(15) - C(16)	119.3(6)
P(1)-C(121)-C(126)	128.1(4)	C(11) - C(16) - C(15)	122.6(6)
C(122) - C(121) - C(126)	117.4(5)	C(1)-C(21)-C(22)	124.6(5)
C(121)-C(122)-C(123)	119.7(6)	C(1)-C(21)-C(26)	117.8(5)
C(122) - C(123) - C(124)	120.2(6)	C(22) - C(21) - C(26)	117.6(5)
C(123) - C(124) - C(125)	121.5(7)	C(21)-C(22)-C(23)	120.8(5)
C(124) - C(125) - C(126)	119.4(6)	C(22)-C(23)-C(24)	120.0(6)
C(121)-C(126)-C(125)	121.7(5)	C(23) - C(24) - C(25)	120.9(7)
N(3) - C(31) - C(32)	119.5(4)	C(24) - C(25) - C(26)	119.9(6)
N(3)-C(31)-C(36)	121.0(5)	C(21)-C(26)-C(25)	120.8(5)

Table 3. Major bond angles (ω) in structure 3

reaction mixture was evaporated *in vacuo*, and the residue was dissolved in 3 mL of THF. To the obtained solution 1 mL of 3 *N* NaOH solution and 1 mL of 30 % solution of H_2O_2 were added at 0 °C. The mixture was stirred for 3 h at 20 °C and 15 min at 50 °C; then it was extracted with a hexane—benzene (1 : 1) mixture. The organic layer was washed with water and dried with magnesium sulfate. Crystals were separated in the course of evaporation of the organic layer. They were washed with a hexane—acetonitrile mixture (5 : 1). Yield of compound 6 was 0.12 g (33 %), m.p. 137–140 °C. Found (%): C, 75.90; H, 5.67; N, 7.33; P, 7.10. C₂₅H₂₁BN₂O. Calculated (%): C, 75.75; H, 5.30; N, 7.07; P, 7.82. IR, v/cm⁻¹: 3220 (N—H); 1634 (C=N); 1180 (P=O). ³¹P NMR (C₆H₆), δ : 16.36.

After removing compound 6 the filtrate was evaporated, and a viscous yellow oil was obtained as a residue. The yield of compound 7 was 0.1 g (47 %). MS, m/z (I_{rel} (%)): 232 [M]⁺ (47), 176 [M-C₄H₈]⁺ (50.7), 133 [M-C₄H₈-C₃H₇]⁺ (22.8), 105 [M-PhCO]⁺ (100), 77 [Ph]⁺ (26.2).

The work was financially supported by the International Science Foundation (Grant RHB 000) and the Russian Foundation for Basic Research (Project No. 94-03-08807).

References

- B. A. Arbuzov and G. N. Nikonov, in *Advances in Heterocyclic Chemistry*, Ed. A. R. Katritzky, Academic Press, New York, 1994, **61**, 59.
- A. S. Balueva, G. N. Nikonov, R. M. Kamalov, N. A. Khailova, and M. A. Pudovik, *Izv. Akad. Nauk SSSR, Ser. Khim.*, 1991, 1209 [*Bull. Acad. Sci. USSR, Div. Chem. Sci.*, 1991, **40**, 1088 (Engl. Transl.)].
- 3. B. A. Arbuzov, G. N. Nikonov, A. S. Balueva, R. M. Kamalov, M. A. Pudovik, R. R. Shagidullin, A. Kh.

Plyamovaty, and R. V. Khadiullin, *Izv. Akad. Nauk SSSR, Ser. Khim.*, 1991, 2393 [*Bull. Acad. Sci. USSR, Div. Chem. Sci.*, 1991, **40**, 2099 (Engl. Transl.)].

- 4. A. N. Pudovik, G. V. Romanov, and T. Ya. Stepanova, Izv. Akad. Nauk SSSR, Ser. Khim., 1982, 1416 [Bull. Acad. Sci. USSR, Div. Chem. Sci., 1982, 31, 1263 (Engl. Transl.)].
- 5. A. A. Karasik, S. N. Ignat'eva, O. A. Erastov, and B. A. Arbuzov, *Izv. Akad. Nauk SSSR, Ser. Khim.*, 1988, 2190 [*Bull. Acad. Sci. USSR, Div. Chem. Sci.*, 1988, **37**, 1972 (Engl. Transl.)].
- 6. D. Fenske and J. Lons, Chem. Ber., 1975, 108, 3091.
- G. N. Nikonov, A. S. Balueva, A. A. Karasic, I. A. Litvinov, S. R. Prokhorova, and O. N. Kataeva, *Heteroatom. Chem.*, 1994, 5, 43.
- 8. Comprehensive Organic Chemistry. The Synthesis and Reactions of Organic Compounds, Ed. I. O. Sutherland, Pergamon Press, New York, 1979.

Received April 3, 1995; in revised form June 20, 1995