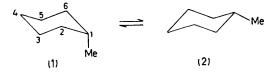
J.C.S. Снем. Сомм., 1976


Conformational Free Energy Difference $(-\Delta G^{\circ} \text{ value})$ of the Methyl Group in Methylcyclohexane: an Accurate Determination by the Direct, Low-temperature Nuclear Magnetic Resonance Method

By HAROLD BOOTH* and JEREMY R. EVERETT

(Department of Chemistry, The University of Nottingham, Nottingham NG7 2RD)

Summary The low-temperature pulse Fourier transform ¹³C n.m.r. spectrum of methylcyclohexane, enriched with ¹³C in the methyl substituent, shows that the ratio of major conformation (methyl equatorial) to minor conformation (methyl axial) is 164:1 (0.6% methyl axial), corresponding to a conformational free energy difference at 172 K of 1.74 ± 0.06 kcal mol⁻¹ (7.30 ± 0.25 kJ mol⁻¹).

The conformational free energy difference $(-\Delta G^{\circ} \text{ value})$ of the methyl group is one of the cornerstones of the quantitative conformational analysis of cyclohexanes; it has been determined often,¹ but only once² by the 'direct' method from methylcyclohexane $(1 \rightleftharpoons 2)$ in which the

proportion of minor conformation (1), with axial methyl, is estimated under conditions of slow exchange. In the

¹³C n.m.r. experiment of Anet et al.² (1) was clearly identified, but the derived $-\Delta G^{\circ}$ value (1.6 kcal mol⁻¹) was limited in accuracy by the high noise level of the continuous wave spectrum. We briefly report a $-\Delta G^{\circ}$ value of greater accuracy, determined by spectroscopic examination of methylcyclohexane, enriched with ¹³C at the methyl carbon, using pulse Fourier transform ¹³C n.m.r. spectroscopy.

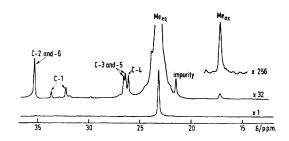


FIGURE The ¹³C n.m.r. spectrum of [Me-¹³C]methylcyclohexane at 172 K in CFCl_g-CDCl_g, measured at 25.15 MHz with a JEOL P.S. 100 spectrometer, JEOL pulse programmer, and NICOLET 1085 computer. The free induction delays were sampled over 2500 Hz using 8192 data points. The pulse width was 4 μ s (30° tip) and the repetition time was 4 s.

 $[Me^{-13}C]$ Methylcyclohexane[†] was synthesised in 47% overall yield from ¹³C-enriched methyl iodide (2 g, 91.0 ¹³C atom %) and cyclohexanone by a classical route through 1-methylcyclohexan-1-ol and 1-methylcyclohex-1-ene. The noise-decoupled ¹³C spectrum, recorded at 172 K in CFCl₃- $CDCl_3$ (90:10 v/v) showed signals for the enriched methyl carbon at δ 23.47 (methyl equatorial) and 17.43 (methyl axial) (Figure). In addition, the natural abundance ¹³C carbon atoms of (2) gave signals at δ 33.2 [C-1, d, 1J (13C-13C) 36.0 Hz], 35.5 (C-2 and -6, s), 26.7 [C-3 and -5, d, $^{3}J(^{13}C-^{13}C)$ 4.3 Hz], and 26.4 (C-4, s) p.p.m.

The ratio [2]/[1] was found to be 165.2 by instrumental integration, and to be 163.2 by hand planimetry. The ¹³C spin-lattice relaxation time (T_1) values for equatorial and axial methyl carbon nuclei may differ, but are both expected to be < 1 s at 172 K (cf. ref. 3). Consequently, with a pulse angle of 30° and a pulse repetition time of 4 s, the relative signal areas should be an accurate measure of the corresponding molecular proportions.

The equilibrium constant of $164 \cdot 2 \pm 7$ (ref. 2. gave ca. 100), taken in conjunction with the sample temperature of 172 \pm 4 K, leads to a $-\Delta G^{\circ}_{172}$ value, for methyl in methylcyclohexane, of 1.74 ± 0.06 kcal mol⁻¹, the present accepted value⁴ being 1.7 kcal mol⁻¹.

(Received, 3rd February 1976; Com. 109.)

 $\uparrow > 99\%$ pure by g.l.c., the identified impurities being cyclohexanone (< 0.5%) and 1-methylcyclohex-1-ene (< 0.5%).

- ¹ Cf. E. W. Garbisch, Jr., B. L. Hawkins, and K. D. Mackay, in 'Conformational Analysis: Scope and Present Limitations', G. Chiurdoglu, Academic Press, New York, 1971, p. 93; E. L. Eliel and T. J. Brett, J. Amer. Chem. Soc., 1965, 87, 5039. ² F. A. L. Anet, C. N. Bradley, and G. W. Buchanan, J. Amer. Chem. Soc., 1971, 93, 258.

 - ³ H. Booth and M. L. Jozefowicz, J.C.S. Perkin II, in the press.
 - ⁴ Cf. J. A. Hirsch, Topics Stereochem., 1967, 1, 199.