SYNTHESIS AND TRANSFORMATIONS OF FURAN DERIVATIVES

VI. AMIDES OF β -(2-FURYL)- AND β -(5-NITRO-2-FURYL- α -ACYLAMIDOACRYLIC

ACIDS) AND 1-SUBSTITUTED 2-PHENYL-4-(5'NITRO-2'-FURFURYLIDEN)-5-IMIDAZOLONES

N. O. Saldabol, A. É. Treilone,

UDC 615.756.2-012

L. N. Alekseeva, B. A. Brizga, and K. K. Medne

By the reactions of 2-phenyl-4-(2'-furfuryliden)-, 2-phenyl-4-(5'-nitro-2'-furfuryliden)-, and 2-methyl-4-(5'-nitro-2'-furfuryliden)-5-oxazolones with primary and secondary amines, a series of N-mono- and N,N-disubstituted amides of the corresponding α -benzamido- β -(2-furyl)-acrylic and α -benzamido- and α -acetamido- β -(5-nitro-2-furyl)acrylic acids was synthesized. 1-Alkyl(aryl) substituted 2-phenyl-4-(5'-nitro-2'-furfuryliden)-5-imidazolones were synthesized from the reaction of phosphorus oxychloride and the monosubstituted amides of α -benzamido- β -(5-nitro-2-furyl)acrylic acid.

In searching for new antibacterial compounds based on 2-phenyl-4-(2'-furfuryliden)-, 2-phenyl and 2-methyl-4-(5'-nitro-2'-furfuryliden)-5-oxazolones, the synthesis of substituted amides of α -benzamido- β -(2-furyl)acrylic, α -benzamido- and α -acetamido- β -(5-nitro-2-furyl)acrylic acids, and the subsequent conversion of the monosubstituted amides of α -benzamido- β -(5-nitro-2-furyl)acrylic acid to the 1-alkyl (aryl) substituted 2-phenyl-4-(5'-nitro-2'-furfuryliden)-5-imidazolones was carried out. The synthesis of these compounds was carried out on the basis of the literature descriptions of 2-phenyl-4-(2'-furfuryliden)-[1], 2-phenyl-4-(5'-nitro-2'-furfuryliden)-, and 2-methyl-4-(5'-nitro-2'-furfuryliden)-5-oxazolones [2], which were obtained by the condensation of the corresponding furfurol or 5-nitrofurfurol with hippuric or aceturic acids. We obtained 2-phenyl-4-(5'-nitro-2'-furfuryliden)-5-oxazolone in an almost quantitative yield by a slightly modified procedure. The yield of the oxazolone based on 5-nitrofurfurol and aceturic acid was significantly lower (50-60%), and we could not prepare the oxazolone from furfurol and aceturic acid.

We obtained a series of substituted amides of α -benzamido- β -(2-furyl)acrylic, and α -benzamido-and α -acetamido- β -(5-nitro-2-furyl)-acrylic acids (I-XV) (Table 1) from the reaction of the oxazolones listed above with primary and secondary amines (benzylamine, isobutylamine, dimethylamine, diethylamine, dibutylamine, and morpholine).

$$X = H$$
; NO_2 : $R = CH_3$. C_6H_5 ; $NR'R'' = NHC_6H_5$, $NHCH_2C_6H_5$:

morpholino; $NHAlk$; $N(Alk)_7$

It was established that the nitro group in the furan ring makes the formation of the amides possible, and the latter are even formed in the cold or upon mild heating; upon prolonged heating their yields decrease. Longer heating (1-2 h) is required to prepare amides from 2-phenyl-4-(2'-furfuryliden)-5-oxazolone. The reaction of 2-methyl-4-(5'-nitro-2'-furfuryliden)-5-oxazolone with amines is accompanied by strong tarring and only in isolated cases could we obtain amides of α -acetamido- β -(5-nitro-2-furyl)acrylic acid. Primary amines enter into reaction with oxazolones more easily than secondary. Considering all these properties, we found 3 most suitable methods of synthesis: in a medium of organic solvent with prolonged heating (method A), during a 10 min heating (method B), and with heating in an excess of amine (method C).

Institute of Organic Synthesis, Academy of Sciences of the Latvian SSR, Riga. Translated from Khimiko-Farmatsevticheskii Zhurnal, No. 2, pp. 21-27, February, 1967. Original article submitted March 23, 1966.

TABLE 1. Substituted Amides of Acylaminofurylacrylic Acid

=C -CON - HCOR	
× CH=	

(0/0)	z	8.09 8,97 110,74 111,76 111,76 111,16 11,96 11,96 11,96 11,96 11,36 11,32	8,59
Calculated (in	н	7,0 4,7,7,4,4,7,5,4,4,7,5,4,4,5,5,4,5,5,4,5,5,5,5	5,56
Calc	၁	72, 81 66, 44 66, 49 66, 49 66, 49 66, 49 63, 35 63, 35 63, 66 63, 66 63, 66 63, 66 63, 66 63, 66 63, 66 63, 87 72, 27 72, 27 72, 27 69, 21 72, 27 72, 27 72, 27 72, 27 73, 27 74, 27 75, 27 77, 27 77	66,24
	Z	8, 07 11, 15 12, 15 12, 15 12, 15 12, 15 16, 16 16, 16 17, 16 11, 67	8,88
Found (in %)	н	0,0,4,0,0,4,0,4,0,0,0,4,0,0,4,0,0,4,0,0,4,0,0,4,0,0,4,0,0,4,0,0,0,0,4,0	5,66
For	U	72. 68.89 69.489 69.489 69.389 69.389 69.74, 93.66 69.74, 93.66 69.74, 93.66 69.74, 93.66 69.74, 93.66 69.74, 93.66 69.74, 93.66	66,22
	Empincal formula	C21H48/V2O C15H48/V2O C15H417/V3O C18H117/V3O C18H117/V3O C18H118/V3O C18H118/V3O C18H118/V3O C18H118/V3O C18H117/V3O C18H117/V3O C18H117/V3O C18H117/V3O C18H117/V3O	$C_{18}H_{18}N_2O_3$
Melting	remper- ature (in degrees)	154—155 153—154 196—197 196—196 189—196 193—194 126—128 203—204 147—149 161—163 201—203 158—160 131—134	175—176
	Yield (in %)	8886988888888 4,48,88888888 4,68,4,08,69,67,88,68 4,68,4,08,68,69,68,68,68,68,68,68,68,68,68,68,68,68,68,	86,2
p	Metho of syn- thesis	4488884848 8	¥
	N \R'	NHCH ₂ C ₆ H ₅ NHC ₄ H ₅ -I ₆ NHC ₄ H ₅ -I ₆ NHC ₄ H ₅ -I ₇ N(C ₂ H ₅) ₂ N(C ₄ H ₅) ₂ N(C ₄ H ₆ -I ₅) ₂ N(C ₄ H ₆ -I ₅) ₂ NHC ₄ H ₆ -I ₅ NHC ₆ H ₇ NHC ₆ H ₇	$\binom{\circ}{z}$
	æ	######################################	C ₆ H ₅
	×	THOOOOOOHOH O	п
	Com- pound		X

 O_2N CH N C_6H_5

Com- pound	R		Melting	Empirical formula		Found $\%$		Calculated %				
			temper- ature (in degrees)		С	Н	N	С	Н	N		
XVI XVII	C_6H_5 $CH_2C_6H_5$	85.0 84.2	198-200 172-174	$C_{20}H_{13}N_3O_4 \\ C_{21}H_{15}N_3O_4$	66.99 67.22	3.74 3.73	11.58 10.81	66.85 67.55	3.65 4.05	11.69 11.26		
XVIII	iso-C ₄ H ₉	88.2	196-198	$C_{18}H_{17}N_3O_4$	63.33	5.41	12.24	63.71	5.05	12.38		

The synthesized amides are crystalline materials from light-yellow to orange-yellow in color, very soluble in alcohol. The substituted amides of α -acetamido- β -(5-nitro-2-furyl)acrylic acid are very soluble in water and the amides of α -benzamido- β -(2-furyl)- and α -benzamido- β -(5-nitro-2-furyl)acrylic acid are not very soluble in water.

1-Alkyl(aryl) substituted 2-phenyl-4-(5'-nitro-2'-furfuryliden)-5-imidazolones were synthesized from the reaction of phosphorus oxychloride with the monosubstituted amides of α -benzamido- β -(5-nitro-2-furyl)acrylic acid over 2 h with heating on a water bath.

O₂N CH=C-CONHR POCl₃

$$O_2$$
N O_2 N O_2 N O_2 N O_3 N O_4 CH=N O_4 N O_4 N O_4 N O_6 H O_6 H

Cyclization of the amides to the imidazolones does not occur upon insufficient heating. We could not obtain the imidazolones from the monosubstituted amides of α -benzamido- β -(2-furyl)- and α -acetamido- β -(5-nitro-2-furyl)acrylic acids.

The imidazolones are crystalline materials from yellow to orange color, very soluble in alcohol and not very soluble in water.

The antibacterial activity of the initial oxazolones and of the substituted amides and imidazolones was investigated. As is shown in Table 3, in comparison with other already known derivatives of the nitrofuran series, for example, furazolidone [3, 4] and the known antitubercular agents, tubazide and streptomycin, these compounds are not very active.

EXPERIMENTAL

2-Phenyl-4-(5'-nitro-2'-furfuryliden)-5-oxazolone. 35.8 g (0.2 mole) of hippuric acid, 28.2 g (0.2 mole) of 5-nitrofurfurol, 16.4 g (0.2 mole) of anhydrous sodium acetate, and 100 ml of acetic anhydride were heated on a water bath at 60-70°C for 30 min. 330 ml of 50% alcohol was added and after cooling, the precipitated residue was filtered. The residue was washed with a small amount of ether. Yield 56.35 g (99.2%), m.p. 176-178° (from benzene).

Benzylamide of α -Benzamido- β -(2-furyl)acrylic Acid (Method A). 1.9 g (0.008 mole) of 2-phenyl-4-(2-furfuryliden)-5-oxazolone, 2.14 g (0.02 mole) of benzylamine, and 12 ml of dry benzene were heated at 70° for 2 h on a water bath and then left overnight. Upon standing a light-yellow solid precipitated. It was filtered and washed with a small amount of benzene, followed by ether. Yield 2.24 g (81.4%), m.p. 154-155° (from alcohol).

Benzylamide of α -Benzylamido- β -(5-nitro-2-furyl)acrylic Acid (Method B). 2.28 g (0.01 mole) of 2-phenyl-4-(5'-nitro-2'-furfuryliden)-5-oxazolone and 12 ml of dry benzene were heated on a water bath to 50° and 2.21 g (0.02 mole) of benzylamine was slowly added. The oxazolone dissolved and the precipitate of the amide formed immediately. The reaction mixture was heated on a water bath at 70° for 10 min. The mixture was cooled and the residue was filtered and washed with a small amount of benzene followed by ether. Yield 2.76 g (89.3%), m.p. 195-197° (from alcohol).

TABLE 3. Antibacterial Activity of Furan Derivatives

	s ally	Q	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ı	>50	33.3		>50	>50	>50	>50	>50	,)				60 60 60 60	33.3	G. R. A.	99.9	>50
ınism	tuberculosis Ily medicinally stable	vallee																			
oorga		1 .	3 >50		3 >50	3 33.3		>50	250	3 33.3	33.3						er er		20		
micr	Strain M. tuk medicinally sensitive	Rv nel	33.3		33,3	33.3		>50	>20	33,3	33,3	> 5 0))				16.7	16.7	22.2		. e.
arresting the growth of the microorganism*	1	Sh. boydii type I No.1	>50		>20	33.6		>20	>20	25	33,3						ας ας	12.5	67 67	0.1	• က က
the gro	8021.0N	Salm. typh	9.99		166.6	>100	>100	>100	33.3	200	>500	33 33 33					>100 >50	9,99	0 41	;	
esting	-timite	Sh. stuzeri zii No.128											>12.5		>12.5	>25					
ml) arr		Esherichia coli No.675											>12.5		>12,5	>25					
ams/1	səp	Bac. mycoi	>222		>222	>133	27	22	27								1,333 >66	1,333	9.4	!	
rogr	c. aur. 10.209	Staphyloco haemolit. 1	111		>222	>133	55	22	27								666]	co.	0.1	!	
(in mic	9444.0 <i>N</i>	Salm typhi	100			>100	>100	>100	20	>200	>500	333.3					>100	0	8	•	
concentration (in micrograms/ml)	Ko.5063	Sh. sonnei	>100		>166.6 >166	>100	>200	>100	>100	>500	×200	333.3	>12.5		>12.5	>25	>100	9.99	0.2		
oncen.	¥I7,0V	Sh. sonnei	>100		>166.6	>100	>200	>100	>100	>500	>500	500					>100	>100	0.41		
Minimal c	788,	Sh. flexner type 2 ^a No	9.99		111.1	>100	>200	333.3	166.6	>500	>200	333,3					×100 ×	>100 >	0		
Min		Sh. flexner 2 ^a No. 170	>100		166.6	>100	>500	333.3	166.6	>500	>500	333.3	>12.5	1	>12.5	>25	>100				
	of		Benzylamide of β -(2-furyl)- α -benzamido-	acrylic acid	Isobutylamide of β -(2-furyl)- α -benzamido-acrylic acid	Benzylamide of β -(5-nitro-2-furyl)- α -benzamidoacrylic acid	Isobutylamide of β -(5-nitro-2-furyl)- α -benzamidoacrylic acid	Diethylamide of β -(5-nitro-2-furyl)- α -benzamidoacrylic acid		Dibutylamide of β -(5-nitro-2-furyl)- α -	DenzamIdoacrylle acid	٠٠٠٠)	acetamidoacrylic acid	5-imidazolone	1-Benzyl-z-phenyl-4-(5'-nitro-2'- furfuryliden)-5-imidazolone		<pre>iuryliden)-5-imidazolone 2-Phenyl-4-(2'-furfuryliden)-5-oxazolone 2-Phenyl-4-(5'-nitro-2'-furfuryliden)-5-</pre>		Vazzolone Furazolidone	Tubazide	* For method of determination see [5, 8]
	No. of	ponnod)	=	Ħ	13	Λ	VI	VII	VIII	Ħ	XVI	77777	T / C	XVIII	XXX	XXI			

Diethylamide of α -Benzamido- β -(2-furyl)acrylic Acid (Method C). 1.0 g (0.0042 mole) of 2-phenyl-4-(2'-furfuryliden)-5-oxazolone and 2.9 g (0.04 mole) of diethylamine were heated at 70° for 15 min. Initially, the oxazolone dissolved in the excess amine, but after several minutes a yellow precipitate separated. The mixture was cooled, and the precipitate was filtered and washed with a small amount of benzene, followed by ether. Yield 0.85 g (65.4%), mp 131-134° (from alcohol).

1,2-Diphenyl-4-(5'-nitro-2'-furfuryliden)-5-oxazolone. 1.13 g (0.03 mole) of the anilide of α -ben-zamido- β -(5-nitro-2-furyl)acrylic acid and 3 ml of phosphorus oxychloride were heated on a water bath for 2 h. The hot mixture was poured into 50 ml of cold water. The mixture was left overnight. The precipitate was filtered and washed with water. Yield 0.9 g (84.2%), mp 198-200° (from alcohol).

LITERATURE CITED

- 1. E. Erlenmeyer and W. Stadlin, Justus Liebigs Ann. Chem., Bd 337, S. 283 (1904).
- 2. Tadashi Sasaki, Pharm. Bull. (Japan), 2, 123 (1954).
- 3. L. N. Alekseeva, Antibacterial Compounds-5-Nitrofuran Derivatives [in Russian], Riga (1963), p. 91.
- 4. S. A. Giller, S. P. Zaeva, K. K. Venter, et al., Khimiya Heterotsiklich. Soedinenii, No. 2, 187 (1965).
- 5. L. N. Alekseev, Antibacterial Compounds-5-Nitrofuran Derivatives [in Russian], Riga (1963), p. 84.
- 6. K. K. Medne, Izv. AN Latviisk. SSSR, No. 3, 84 (1963).